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Abstract

Top income inequality in the United States has increased considerably within
occupations. This phenomenon has led to a search for a common explanation.
We instead develop a theory where increases in income inequality originating
within a few occupations can “spill over” through consumption into others. We
show theoretically that such spillovers occur when an occupation provides non-
divisible services to consumers, with physicians our prime example. Examining
local income inequality across U.S. regions, the data suggest that such spillovers
exist for physicians, dentists, and real estate agents. Estimated spillovers for
other occupations are consistent with the predictions of our theory.
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1 Introduction

The increase in top earnings since the 1980s has been accompanied by growing in-

equality within the top of the distribution, both in aggregate (Jones and Kim 2014)

and within occupations (Bakija, Cole, and Heim 2012). At first glance, this pattern

suggests that any explanation for rising inequality—whether globalization, deregula-

tion, changes to the tax structure, or technology—would have to apply to occupations

as diverse as bankers, doctors, and CEOs (Kaplan and Rauh 2013). We argue instead

that an increase in income inequality originating within a few occupations can “spill

over” into others, driving broader changes in income inequality. Our prime example

is physicians, who comprise 13 percent of the top percent of wage earners.

Our first contribution is theoretical. We characterize conditions under which an

increase in one group’s top income inequality increases top income inequality for

certain service providers. This occurs when the services provided are heterogeneous

in quality and non-divisible—i.e., consumers cannot substitute quality with quantity.

These spillovers are geographically local when the services are nontradable.

We examine our model’s predictions in U.S. labor market data. Using a shift-share

strategy, we show that increases in a region’s top income inequality spill over into top

income inequality among physicians, dentists, and real estate agents, with a spillover

elasticity of 1.2 to 1.5. In contrast, we do not observe such spillovers for occupations

that do not meet the model’s requirements (such as engineers and financial managers).

Using a broader set of occupations and characteristics of occupations, we show that

the sizes of spillovers are consistent with the model’s predictions.

Our analysis begins in Section 2 by documenting that the increase in top income in-

equality is driven primarily by an increase in within-occupation top income inequality.

We decompose wage income changes from 1980 to 2012 and find that three-quarters

of the rise in the 99th to 90th percentile income ratio is within-occupation.

In Section 3, we develop a theory under which income inequality can spill over from

one occupation to another. In our model, widget makers with heterogeneous incomes

buy the services of doctors of heterogeneous abilities, who provide medical services of

heterogeneous quality. Consumption of medical services is nondivisible: Each widget

maker needs to consume one unit of one doctors’ services. In addition, production is

not scalable: each doctor can only serve a fixed number of widget makers. This gives

rise to a positive assortative matching mechanism. When both groups’ abilities are
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Pareto distributed, the incomes of both widget makers and doctors are also Pareto

distributed. An (exogenous) increase in income inequality among the widget makers

increases relative demand for the services of the highest-ability doctors and increases

top income inequality among doctors.

Nondivisibility in output is necessary for this assignment mechanism to emerge:

if medical services were divisible and doctors were to differ in their quality-adjusted

quantity of medical service provided, then any change in the income distribution of

widget makers would only translate into a change in the price of a unit of quality-

adjusted medical service—with no consequence for doctors’ inequality. Non-scalability

is not necessary; our results generalize to the case when doctors have a positive

(though not infinite) supply elasticity.

Our baseline model deliberately focuses on local consumption spillovers by con-

sidering a single economy and abstracting from occupational mobility at the top of

the income distribution. Our results are robust to allowing for both occupational and

geographical mobility of doctors; in both cases, increasing local income inequality of

widget makers increases local income inequality for doctors. In contrast, when we

allow for trade in medical services, spillovers occur at the national level so that local

top income inequality of doctors is independent of the local top income inequality.1

In support of our assortative matching mechanism, Section 4 presents empirical

evidence on how health care spending and physician prices relate to household income.

Using a nationally representative survey and detailed medical claims data from one

state, we find that patients earning 10 percent more spend 4.4 percent more on medical

expenditures, with a substantial part of that elasticity reflecting higher prices.

Section 5 introduces our empirical analysis of inequality spillovers in local U.S.

labor markets. We use Census and American Community Survey Data from 1980 to

2014 to build a panel of labor market areas (LMAs) (aggregates of commuting zones)

and conduct our analysis at this level. Guided by our model, we measure top income

inequality as the inverse Pareto coefficient for individuals in the top 10 percent of the

local income distribution. We measure inequality for each occupation, physicians, in

each region. We then regress local top income inequality among physicians on local

top income inequality in the rest of the population.

1Dingel et al. (2023) show that in 2017 over three-quarters of medical care is consumed in the
same hospital referral region (roughly the same size as the Labor Market Areas (LMAs) used in the
present paper) where it is produced and that, while there is some trade across regions, the home
market drives the pattern of that trade. This local share was even higher before 2017.
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An OLS regression would suffer from several endogeneity concerns, so we rely on

a shift-share strategy. For each LMA, we compute a weighted average of national

occupational inequality (measured with the inverse Pareto coefficient). The weights

correspond to the relative importance of each occupation in each LMA at the begin-

ning of our sample (1980). In other words, we only exploit the changes in local income

inequality that arise from the occupational distribution in 1980 combined with the

nationwide trends in occupation-specific inequality. This weighted average serves as

our instrument for general inequality in the LMA. We follow the identification as-

sumption of Goldsmith-Pinkham, Sorkin and Swift (2020). That is, we assume the

occupational shares are not correlated with changes in the outcome variable other

than through their effect on local top income inequality.

The model predicts local inequality spillovers for occupations providing services

that are heterogeneous in quality, nondivisible, and nontradable. In section 6, we focus

on three high-earning occupations satisfying these criteria: physicians, dentists, and

real estate agents. We find positive spillover coefficients, with elasticities in the range

of 1.2 to 1.5. The parameter estimates suggest that most of the increase in inequality

for these occupations can be explained by increases in others’ income inequality.

Finally, we estimate spillover coefficients for an additional 25 occupations common

in the top 10 percent of the income distribution. These occupations do not fit the

requirements of our theory, and we find significant local inequality spillovers for only

one of the 25. We then relate the estimated coefficients to occupational characteristics.

In line with our theory, the spillover coefficient is positively correlated with measures

of the importance of customer service and of working directly with the public from

O*NET and negatively correlated with a measure of offshorability, our proxy for the

tradability of a service.

This paper contributes to a large literature on the rise in top income inequality

and its causes (Piketty and Saez, 2003; Atkinson, Piketty and Saez 2011). This

literature has established that at the top, the income distribution is well-described

by a Pareto distribution (see Guvenen, Karahan, Ozkan, and Song 2021 for recent

evidence and Pareto, 1896, for the earliest). Jones and Kim (2014) show that the

increase in top income inequality specifically reflects a fattening of the right tail of

the income distribution, which corresponds to a decrease in the shape parameter of

the Pareto distribution.

More specifically, our paper builds on the “superstars” literature originating with
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Rosen (1981), who explains how small differences in talent may lead to large differ-

ences in income. The key element in his model is the indivisibility of consumption

which arises from a fixed cost in consumption per unit of quantity. This leads to a

“many-to-one” assignment problem as each consumer only consumes from one per-

former (singer, comedian, etc.), but each performer can serve a large market (see also

Sattinger 1993).2 In that framework, income inequality among performers increases

because technological change or globalization allows the superstars to serve a much

larger market—that is, to scale up production.3 Specifically, if w(z) denotes the in-

come of an individual of talent z, p(z) denotes the average price for her services,

and q(z) is the quantity provided, so w(z) = p(z)q(z), the standard interpretation

of superstars’ is that they have very large markets (a high q(z)). This makes such a

framework poorly suited for occupations where output is not easily scalable, such as

doctors, dentists, and real estate agents.

In contrast, we focus on such occupations and study an assignment model that is

“constant-to-one”where superstars are characterized by a high price p(z) for their ser-

vices. This makes our paper closer to Gabaix and Landier (2008). They argue that

since executives’ talent increases the overall productivity of firms, the best CEOs

are assigned to the largest firms. They show empirically that the increase in CEO

compensation can be fully attributed to the increase in firms’ market size. Grossman

(2007) and Terviö (2008) present models with similar results. These papers use multi-

plicative production functions in CEO skill and firm productivity, i.e., Cobb-Douglas,

whereas we consider a consumption problem and extend beyond the Cobb-Douglas

setting. Along the same lines, Määttänen and Terviö (2014) build an assignment

model for housing. They calibrate their model to six U.S. metropolitan areas and

find that the increase in inequality has led to an increase in house price dispersion

(see also Landvoigt, Piazzesi and Schneider 2015).4

Our theory offers an amplification mechanism where any shock to top income

inequality can spill over to other occupations. The “original” shock may arise from

technological change affecting firm size and thereby executive pay.5 Globalization is

2Adding network effects, Alder (1985) goes further and writes a model where income can dras-
tically differ among artists of equal talents.

3König (2021) provides empirical evidence for entertainers using the roll-out of television.
4Määttänen and Terviö (2014) consider an assignment model with CES preferences over housing

and other goods. They show that a mean-preserving spread in income will lower the price of lower-
priced houses and might increase the prices of more expensive ones.

5For instance, Geerolf (2017) builds a span of control model to micro-found the fact that firms’
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a natural candidate, and Bonfiglioli, Crino, and Gancia (2018) show how trade costs

can affect firm size distribution and top income inequality.6 Many other explanations

exist: Jones and Kim (2018) and Aghion et al. (2019) look at the role played by

innovation; Piketty, Saez, and Stantcheva (2014) argue that low marginal income tax

rates divert managers’ compensation from perks to wages and increase their incentives

to bargain for higher wages; Philippon and Reshef (2012) emphasize the role played

by the financial sector; while Edmond and Mongey (2021) argue that as high-skill

occupations become more specialized, workers with a comparative advantage in the

skills intensively used by one of these occupations earn larger rents, leading to an

increase in within-occupation income inequality. Our theory is agnostic about which

explanation matters most for the original rise in income inequality, and focuses on

the resulting spillovers to other occupations.

Finally, our paper relates to a literature on demand spillovers. Among others,

Manning (2004) and Mazzolari and Ragusa (2013) relate the polarization of labor

markets to an increase in the demand of low-skill services by high-skill workers. More

closely related to our work, Leonardi (2015) argues that in addition, high-skill workers

also demand relatively more services by high-skill workers, a pattern that can amplify

increases in the skill premium.7 Importantly, our focus is not on the skill premium

but on changes in inequality within the top of the income distribution.

2 The rise of within-occupation top income inequality

We motivate our analysis by showing the importance of within-occupation changes

for the trends in top wage income inequality. Among workers with positive labor

income, the ratio of incomes at the 98th to 90th percentile rose from 1.7 to 2.0 from

size distribution is Pareto. An increase in the number of layers in the firm is associated with a fatter
tail. His model naturally leads to “superstar” effects for managers and a bounded distribution of
talents can lead to an unbounded income distribution.

6In their model, a larger market incentivizes firms to invest in riskier but bigger projects at the
entry stage, resulting in a change in the productivity distribution. Other papers (Manasse and Turini
2001, Kukharskyy 2012; Gesbach and Schmutzel 2014 and Ma and Ruzic 2020) relate globalization
with top income inequality without featuring changes in the Pareto shape parameter of the income
distribution.

7In Buera and Kaboski (2012), structural change leads to a rise in the skill premium as the
demand for skill-intensive service increases with income.
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1980 to 2012.8 Physicians’ ratio increased from 1.5 to 1.8 during the same period,

with similar increases for two other occupations which we focus—dentists and real

estate agents.

To understand the role of occupations more systematically, Figure 1 decomposes

overall changes in wage income from 1980 to 2012 into within- and between-occupation

components. The green series in Panel 1a shows the overall change in log wage income

at each percentile of the income distribution. This reproduces the well-known fact

that incomes have grown the fastest in the top of the income distribution during this

time period. We then adapt the within- and between-firm decomposition of Song

(2019) but use occupations instead of firms.9 The green series shows that income

at the 99th percentile (the average of log income of the top 1 percent) rose by 0.56

log points during this period, and the blue series shows that increases in within-

occupation income inequality drove 0.24 log points of this total.10

Since we focus on changes in income inequality, we next examine how the within-

occupation changes drive relative gains at different points in the distribution. Con-

sider first the log of the ratio of income at the 99th to 90th percentile. Panel 1a shows

that income at these percentiles rose by 0.56 and 0.32 log points, respectively (green

series), so the difference increased by 0.24. Within-occupation factors contributed 0.17

(= 0.24− 0.07) log points of that (blue series), so around three quarters of the total

change in the 99th to 90th ratio is attributable to the increase in within-occupation

income inequality. Panel 1b presents an analogous decomposition for four additional

ratios of income inequality. We see that between two-thirds and three-quarters of

the increase in top income inequality is attributable to changes in within-occupation

income inequality.

8Throughout the paper, we rely on the decennial census (1980, 1990, 2000) and the American
Community Survey (average of 2010-2014, which we refer to as 2012). Appendix Table B.1 shows
the corresponding changes for a selected set of occupations. Details on the data are in Section 5 and
Appendix B.1. Panel 1b shows that the 99th and 90th percentiles show similar trends; disclosure
rules make it easier to present the latter when looking within individual occupations.

9To find the effect of within-occupation changes, we hold the average log wage income for oc-
cupations fixed at the level of 1980 and only include the changes in the distribution around the
averages. For the between-occupation changes we hold the distribution around the average con-
stant, but change the average log wage for occupations. Due to the binning, these two effects don’t
identically sum to the total change, though in practice the differences are small. See Appendix B.1
and Song et al. (2019) Online Appendix E for further details.

10This is consistent with Edmond and Mongey (2021) who, using CPS data, find that residual
income inequality has risen for high-skill workers but fallen for low-skill workers.

6



Figure 1: Changes in Wage Income from 1980 to 2012 between and within Occupations

(a) Changes along the income distribution
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(b) Decomposition for percentile ratios
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Notes: Panel (a) shows the log change in wage income between 1980 and 2012 for all percentiles of the income
distribution (blue line). Following the method of Song et al. (2019), it further decomposes this wage change into
changes attributable to between-occupation changes (green line) and within-occupation changes (red line). Panel
(b) then shows the contributions of between- and within- occupation effects for selected measures of top income
inequality. p99/p90 refers to the ratio of the top 1 percent to the top 10%.

3 Theory

To understand these patterns, this section builds a model of inequality spillovers

across occupations. Section 3.1 builds an assignment model between doctors and their

patients. Section 3.2 relaxes several assumptions, including allowing for occupational

and geographical mobility. Section 3.3 summarizes our empirical predictions.

3.1 The Baseline Model

We consider an economy populated by two types of agents: widget makers of mass 1

and (potential) doctors of mass µd.

Production. Widget makers represent the general population. They produce

widgets, a homogeneous numeraire good. A widget maker of ability x can produce

x widgets. The ability distribution is Pareto such that a widget maker has ability

X > x with probability P (X > x) =
(
xmin

x

)αx
, with lower bound xmin and Pareto

parameter αx > 1. The Pareto parameter, αx, is an (inverse) measure of the spread of

abilities. We treat as αx as exogenous throughout and a fall in αx captures a general

increase in top income inequality. Such a change could arise from globalization or new

technology and directly impacts widget makers but not doctors. We set xmin = αx−1
αx

x̂

to fix the mean at x̂ when αx changes.
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Doctors produce health services and can each serve λ customers, where we impose

λ > µ−1
d so that there are enough doctors to serve everyone. Potential doctors differ

in their ability z, according to a Pareto distribution with shape αz. They have ability

Z > z with probability P (Z > z) =
(
zmin

z

)αz
. All potential doctors can alternatively

work as widget makers and produce widgets at some constant ability, which, without

loss of generality, we set at xmin. (In Section 3.2.1 we instead let an individual’s

potential ability as a doctor and a widget maker be perfectly correlated.) Unlike

Rosen (1981), the ability of a doctor does not change how many patients she can

treat. Instead, her skill increases the utility patients get from her care.

Consumption. Widget makers are also doctors’ patients. Their preferences over

the two goods is represented by the Cobb-Douglas utility function:

u (z, c) = zβc1−β, (1)

where c is the consumption of widgets and z is the quality of (one unit of) health

care. This quality is equal to the ability of the doctor providing the care. The notion

that medical services are not divisible is captured by the assumption that each patient

needs to purchase care from exactly one doctor; one cannot substitute quantity for

quality. As a result, there need not be a common price per unit of quality-adjusted

medical services. More generally,“doctors”here stand in for any occupation producing

non-divisible goods or services for the general population, including dentists and real

estate agents.11

We start with the Cobb-Douglas utility function for ease of exposition but in-

vestigate more general utility functions in Section 3.2.3. For simplicity, doctors only

consume widgets, so the doctors’ patients are exclusively widget makers. This as-

sumption is not essential and is relaxed in Appendix A.5.

3.1.1 Equilibrium

Widget makers. Since a widget maker of ability x produces x homogeneous wid-

gets, widget makers’ income must be distributed like their ability. The consumption

11Although we refer to the “quality” of the good, nothing in our model relies on the “high-quality”
goods being objectively superior. It is merely “quality as perceived by top-earning patients.” So a
pediatrician who can assuage an anxious parent might have a higher z than one with better diagnostic
skills but fewer interpersonal skills. That said, the empirical literature using revealed-preference finds
it to be correlated with other measures (e.g., Dingel et al. 2023).
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problem of a widget maker of ability x can then be written as:

max
z,c

u(z, c) = zβc1−β subject to ω (z) + c ≤ x,

where ω (z) is the price of medical care from a doctor of ability z.

Taking first order conditions with respect to the quality of medical care and the

quantity of the homogeneous good consumed gives:

ω′ (z) z =
β

1− β
[x− ω (z)] . (2)

With Cobb-Douglas preferences, no widget maker spends all her income on health

care, so equation (2) immediately implies that ω (z) must be increasing: doctors of

higher ability earn more per patient. Importantly, the non-divisibility of medical

services implies that doctors are “local monopolists” in that they are in direct compe-

tition only with doctors of slightly higher or lower ability. Therefore, doctors do not

take prices as given and ω(z) need not be a linear function of z.

As long as the utility function has positive cross-partial derivatives, the equilibrium

involves positive assortative matching between widget makers’ income and doctors’

ability (see Appendix A.1). We denote m (z) the matching function: a doctor of

ability z will be hired by a widget maker whose income is x = m(z).

Doctors. Since there are more doctors than needed, the least able doctors will

choose to work as widget makers rather than practicing physicians. Let zc be the

ability level of the least able practicing doctor. Thus m (z) is defined over [zc,∞) and

m (zc) = xmin, where the worst doctor is hired by a patient with income xmin. Market

clearing at all quality levels then implies:

P (X > m (z)) = λµdP (Z > z) , ∀z ≥ zc. (3)

There are µdP (Z > z) doctors with an ability higher than z, each of these doctors

can serve λ patients, and there are P (X > m (z)) patients whose income is higher

than m (z). With Pareto distributions, we can write the matching function explicitly:

m (z) = xmin (λµd)
− 1

αx

(
z

zmin

)αz
αx

. (4)

Intuitively, if αz < αx, top talent is relatively more abundant among doctors than

9



widget makers, and the matching function is concave. Conversely, it is convex if

αz > αx. We then obtain the cutoff value zc = (λµd)
1
αz zmin.

We let w (z) denote the income of a doctor of ability z and note that w(z) = λω(z)

since each doctor provides λ units of health services. As a potential doctor of ability zc

is indifferent between working as a doctor and in the homogeneous good sector earning

xmin, we must have w (zc) = xmin. Combining this with the matching function, (2),

we obtain a differential equation the wage function w (z) must satisfy:

w′ (z) z +
β

1− β
w (z) =

β

1− β
xmin

(
λαx−1

µd

) 1
αx
(

z

zmin

)αz
αx

. (5)

Using the boundary condition at z = zc, we obtain a single solution for the wage

profile of doctors. Appendix A.2.1 demonstrates that this function is:

w (z) = xmin

[
λβαx

αz (1− β) + βαx

(
z

zc

)αz
αx

+
αz (1− β) + βαx (1− λ)

αz (1− β) + βαx

(zc
z

) β
1−β

]
. (6)

As expected, the wage profile w (z) is increasing in doctor’s ability z , and w (zc) =

xmin. The first term on the right-hand side of (6) dominates for large z
zc

and ensures

an asymptotic Pareto distribution, so that for large z
zc
, we get:

w (z) ≈ xmin
λβαx

αz (1− β) + βαx

(
z

zc

)αz
αx

. (7)

Equation (7) shows that the wage schedule at the top is concave in z if αz < αx;

that is, if talent is relatively more abundant among physicians than widget makers. To

see why, consider a counter-factual equilibrium with a linear price schedule, ω(z) ∝ z.

Widget makers would then be spending a rising share of their income on medical

services since medical services are abundant in the top. However, this is in conflict

with Cobb-Douglas utility for linear pricing schedules which gives constant spending

shares. Hence, this cannot be an equilibrium: demand for high-ability doctors would

have to drop, bringing down prices, and resulting in a concave payment schedule for

doctors. The non-divisibility of medical services is essential for this result. If a high-

earning widget maker could simply substitute the services of one doctor of ability z

with two doctors of ability z/2, a linear pricing schedule would be the equilibrium.

Conversely, the payment schedule would be convex if talent were relatively scarce
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among doctors.12 We can thus derive:

Proposition 1 (Spillovers). Doctor income is asymptotically Pareto distributed with

the same shape parameter as for the widget makers. In particular, an increase in top

income inequality for widget makers increases top income inequality for doctors.

To see this result, we first define the relevant distribution. Among the set of prac-

ticing doctors (potential doctors who work as doctors), let Pdoc (Wd > wd) be the prob-

ability that income exceeds w. By definition, this is Pdoc (Wd > wd) =
(
w−1(wd)

zc

)−αz

.

Using Equation (7), for wd large enough, we can approximate this distribution as:

Pdoc (Wd > wd) ≈
(

xminλβαx
αz (1− β) + βαx

1

wd

)αx

. (8)

That is, the income of (active) doctors is Pareto distributed at the top. Importantly,

the shape parameter is inherited from the widget makers, and is independent of the

spread of doctor ability, αz. In particular, a decrease in αx directly translates into

a decrease in the Pareto parameter for doctors’ income distribution: an increase in

inequality among widget makers leads to an increase in inequality among doctors. In

other words, the increase in top income inequality spills over from one occupation

(the widget makers) to another (doctors). At the top it also increases the income of

doctors as a decrease in αx leads to an increase in P (Wd > wd) for wd high enough.13

The inequality in skills for the doctors is irrelevant for the Pareto parameter: a de-

cline in αz—an increase in ability inequality—would imply relatively more high-ability

doctors, but their relative pay would correspondingly decline, leaving the overall level

of pay inequality unaffected. Further, a decrease in the mass of potential doctors µd

(equivalent to an increase in the mass of widget makers) does not affect inequality

among doctors at the top. But it does increase the share of doctors who are active

(zc decreases) and their wages (as w (z) increases if zc decreases).

Our results directly generalize to the case where patients’ income and doctors’

ability distribution are only asymptotically Pareto distributed and where potential

doctors may (but need not) also consume medical services (see details in Appendix

12Appendix D.1 in the Supplementary Material (available at http://www.gottlieb.ca) presents
a graphical representation of the model.

13Not all doctors benefit, though, as we combine a decrease in αx with a decrease in xmin to keep
the mean constant. As a result the least able active doctor, whose income is xmin, sees a decrease in
her income. Had we kept xmin constant so that a decrease in αx also increases the average widget
maker income, then all doctors would have weakly gained.
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A.5). Our results also hold when doctors’ ability distribution has a tail fatter than

Pareto. When the tail is thinner than Pareto, a spillover result still holds, although

doctors’ income is no longer Pareto distributed (see Appendix A.6). Finally, in Ap-

pendix A.7, we allow doctors to increase scale at some cost. Intuitively, more elastic

supply from each doctor increases the supply of healthcare quality, especially at the

top. This reduces the pass-through from widget makers’ inequality into price inequal-

ity and thus into doctors’ income inequality—despite the increase in high-quality

healthcare production. As long as the supply elasticity is finite,14 doctors’ income

is still asymptotically Pareto distributed with a shape parameter increasing in αx,

though now different from αx. The size of the spillover coefficient decreases with each

doctor’s supply elasticity of health care services.

Taking stock. Proposition 1 establishes the central theoretical result of our paper:

Changes in the income inequality of widget makers translate directly into the income

inequality of doctors.

3.1.2 Consumer implications

This result has important implications for key outcomes on the consumer side: health

expenditures and welfare inequality.

Health expenditures. Using (4) and (7), we compute that a widget-maker with

income x has log health care expenditures asymptotically given by:

lnh (x) ≈ lnx+ ln

(
βαx

αz (1− β) + βαx

)
. (9)

That is, the spending share on health care is asymptotically constant. As we show

below, this depends crucially on the Cobb-Douglas assumption.

Welfare inequality. The lack of a uniform quality-adjusted price implies that prices

vary along the income distribution. Heterogeneity in consumption patterns implies

that people at different points of the income distribution face different price indices

(Deaton, 1998). A given increase in income inequality thus translates into a lower

increase in welfare inequality. The assignment mechanism implies that as inequality

increases, the richest widget makers cannot obtain better health services—in fact,

14Estimates of doctors’ supply elasticity are all finite, generally in a range around 1 (Clemens
and Gottlieb, 2014) or less than 1 (e.g., Gottlieb et al., 2020) depending on the level at which they
are measured. There is no contention that supply is perfectly elastic.
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they pay more for health services of the same quality. This mechanism limits the

welfare increase in inequality.15

To assess this formally, we use a consumption-based measure of welfare. We

compute the level of consumption of the homogeneous good eq (x) that, when com-

bined with a fixed level of health quality zr, gives the same utility to the widget

maker as what she actually obtains. That is, we define eq (x) through u (zr, eq (x)) =

u (z (x) , c (x)). This yields (with a proof in Appendix A.2.2):

Proposition 2 (Welfare inequality). For x large enough, welfare eq(x) is Pareto-

distributed with shape parameter αeq ≡ αx

1+αx
αz

β
1−β

. Thus d lnαeq

d lnαx
= 1

1+αx
αz

β
1−β

< 1, so an

increase in widget makers’ income inequality translates into a less-than-proportional

increase in their welfare inequality. The mitigation is stronger when health services

matter more (high β) or when doctors’ abilities are more unequal (low αz).

3.2 Extensions

The baseline model makes several important assumptions about the structure of labor

markets and production. To devise appropriate empirical tests for spillovers, we need

to establish which assumptions drive the results and which are innocuous. We first

change assumptions that are not essential for our results: we allow for geographical

and occupational mobility for doctors, and we consider a more general CES utility

function. We then demonstrate that two assumptions necessary for local inequality

spillovers are non-tradability and non-divisibility of medical services.

3.2.1 Occupational Mobility

We have assumed so far that a potential doctor choosing to work as a widget maker

earns the minimum widget maker income, xmin. In practice, those succeeding as

doctors may have succeeded in other occupations as well (Kirkeboen, Leuven, and

Mogstad 2016). To capture this, we now switch to the opposite extreme and assume

perfect correlation between an individual’s ability as a doctor and a widget maker. We

15Moretti’s (2013) work on real wage inequality across cities can be viewed as proposing a similar
assignment mechanism causing high earners to locate in high-cost cities. Diamond (2016) argues
that the amenities of expensive cities are more valuable to the high earners who choose to live there,
so we should not fully adjust incomes for these high costs when calculating welfare. In our context,
this critique would apply if high-income widget makers had stronger preferences for high-quality
doctors than low-income widget makers.
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keep the model as before, except there is a mass of 1 of agents with a uni-dimensional

(Pareto) distribution of skills who decide whether to be doctors or widget makers.

Appendix A.3 shows that Proposition 1 still applies; that is, the income distribu-

tion of doctors is Pareto distributed with the same coefficient αx as widget makers, as

long as λαx−1
(
αz

αx

1−β
β

+ 1
)−αx

< 1. This condition ensures that in equilibrium, above

a certain threshold, individuals of a given ability choose to become both doctors and

widget makers (otherwise all top individuals choose to be doctors). Therefore the

models with and without occupational mobility are observationally equivalent.

Supply- versus demand-side effects. In this model with occupational mobility,

doctors and widget makers interact through both a demand effect—widget makers

are the clients of doctors—and a labor supply effect—doctors can choose to become

widget makers. Since the wage level is directly determined by doctors’ outside option,

one may think that the mechanism leading to spillovers in income inequality is very

different compared to the demand-side mechanism of the baseline model. In Sup-

plementary Material available on our webpage,16 we split the role of widget makers

into two: patients, who only serve as consumers of doctors’ services, and an “outside

option” serving only to provide doctors with an alternative occupation to medicine.

We show that, with Cobb-Douglas preferences, doctors’ income inequality is entirely

driven by their patients’ inequality and is independent of the outside option’s inequal-

ity.17 Consequently, the driving force is still the demand side.

3.2.2 Geographical mobility

Returning to the baseline model of Section 3.1, we now assume that there are 2 regions

of equal size, A and B, and that doctors can move across regions. Medical services

are non-tradable and patients cannot move. The two regions are identical except for

the ability distribution of widget makers, which is Pareto in both but with different

shape parameters. Region A is more unequal than region B; αAx < αBx . Doctors’

ability is Pareto distributed with parameter αz in both regions.18

16See Appendix D.2 in the Supplementary Material available at http://www.gottlieb.ca
17Intuitively, if top income inequality increases for the outside option, higher-ability doctors will

move to the outside option. This generates an increase in the relative pay of the remaining high-
ability doctors, which, under Cobb-Douglas preferences, exactly compensates for the change in ability
distribution of active doctors, leaving the observed income distribution unchanged.

18Our results would generalize to a case with multiple regions and heterogeneous masses of po-
tential doctors and widget makers. In contrast, if doctors are mobile and medical services are also
tradable, the geographic location of agents is undetermined in general, and we would need a full
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We compare autarky to an equilibrium where the only interaction between regions

is the movement of doctors. In autarky, the baseline model of Section 3.1 captures each

region’s equilibrium: doctors’ income is asymptotically Pareto distributed with shape

parameters given by the local income distribution for widget makers. In contrast,

when doctors can move, the equilibrium pay schedule ω(z) must be the same in

both regions; observed inequality can differ only because of changes to the ability

distribution. Most rich patients are in region A, where the income distribution has

a fatter tail. As doctors’ income increases with the incomes of their patients, some

high-ability doctors from region B will move to A—and a larger share of higher-

ability doctors. Since the original share of doctors and ability distributions are the

same in both regions, net migration of doctors is balanced. Therefore, lower-ability

doctors move from A to B, and inequality in ability will be higher in A than in B.

In equilibrium, the resulting ability distributions are both asymptotically Pareto. We

then obtain (proof in Appendix A.4):

Proposition 3. Once doctors have relocated, the income distribution of doctors in

region A is asymptotically Pareto with coefficient αAx , and the income distribution of

doctors in region B is asymptotically Pareto with coefficient αBx .

In the baseline model, doctors’ income in region A is asymptotically Pareto dis-

tributed with a shape parameter of αAx , and similarly with parameter αBx in region

B. Consequently, the observed income distribution among doctors is equivalent in

autarky and with doctors’ mobility. However, while differences in doctors’ income

distribution between A and B originate from differences in the pay scale under au-

tarky, these differences result from different ex-post ability distributions with doctors’

mobility. Consequently, our empirical analysis does not require us to take a stand on

whether doctors are mobile.

3.2.3 Generalizing the utility function

Our results obtain in a far more general case than the Cobb-Douglas utility assumed

above. In Appendix A.5.3, we show that they generalize to any homothetic utility

function that admits positive and finite limits to the elasticity of substitution both

when z
c
tends to infinity and when z

c
tends to 0. For simplicity, we focus here on the

spatial equilibrium model to generate empirical predictions. See Dingel et al. (2023) for more on
this topic, also emphasizing the role of demand in driving spatial patterns of delivery.
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case when preferences have a constant elasticity of substitution (CES). That is, we

replace the utility function of Equation (1) with:

u(z, c) =
(
βzz

ε−1
ε + βcc

ε−1
ε

) ε
ε−1

, (10)

where ε is the elasticity of substitution between physician quality and the homoge-

neous good. With CES preferences, the equilibrium still features positive assortative

matching. In Appendix A.5.2, we show:

Proposition 4. If either (i) ε > 1 and αx ≤ αz, or (ii) ε < 1 and αz ≤ αx <
αz

1−ε , then wages of doctors are asymptotically Pareto distributed with shape parameter

αw = αz

(αz
αx

−1) 1
ε
+1
, which is increasing in the widget maker shape parameter αx. In

addition, log health expenditures grow proportionately with log income: lnh (x) ≈[(
1− αx

αz

)
1
ε
+ αx

αz

]
lnx+ η, where η is a constant.

Proposition 4 restricts attention to two cases. We argue below that, outside of the

Cobb-Douglas case (ε = 1), these are the two empirically relevant cases. In both cases,

doctors’ income is asymptotically Pareto distributed. Although the distribution’s

shape parameter differs from that of widget makers when αz ̸= αx, doctors’ top income

inequality continues to increase with widget makers’ top income inequality. Health

care expenditures increase less than proportionately with income for αz ̸= αx.
19,20

To understand the results of Proposition 4 intuitively, and why we restrict atten-

tion to a specific set of parameters, consider the two cases in turn. First, let medical

services and the outside good be substitutes (ε > 1) and let doctors skill be relatively

scarce in the top (αx < αz). In the Cobb-Douglas case (ε = 1), the pricing schedule

would be convex (see 7) and widget-makers would spend a constant share of their

income on health care. With ε > 1, widget-makers reduce their demand for relatively

expensive healthcare services and health expenditures grow less than proportionately

19In alternative parameter spaces, the equilibria are: If ε < 1 and αx ≥ αz

1−ε , doctors’ income
is not Pareto distributed and the slope of the Engel curve is horizontal for high incomes. That is,
lnh(x)
ln x → 0, which contradicts the results in Section 4. When (ε− 1) (αx − αz) > 0, widget makers

asymptotically spend all their income on health care and doctors’ income is Pareto distributed with
shape parameter αx. See Appendix A.5.2, which solves for the equilibrium in all cases.

20The proposition focuses again on the baseline case with neither geographical nor occupational
mobility. It is, however, possible to derive similar results in the CES case when allowing for either
type of mobility. With occupational mobility, one difference from the Cobb-Douglas case is that
with CES, part of the effect of a rise in income inequality on doctors’ income inequality arises from
the outside option effect instead of purely the demand side.
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with income, since
(
1− αx

αz

)
1
ε
+ αx

αz
< 1. As a result, the wage schedule is less convex

than in the linear case, and the Pareto coefficient for doctors’ income distribution,

αw, is larger than αx—but still increasing in αx.

When ε < 1 and αx > αz, widget-makers would increase their demand for health

care services, asymptotically spending nearly all their income on health care, which

is counterfactual (and therefore not considered in Proposition 4).

The other case considered in Proposition 4 is when medical services and other

goods are complements ε < 1 and when doctors are relatively abundant in the top:

αx > αz. With relatively abundant medical services and complementarity between

goods, health care expenditures rise less than proportionately with income. Doctors’

income is then again asymptotically Pareto distributed with shape parameter αw >

αx, provided that doctors are not too abundant at the top (αx <
αz

1−ε).

Our empirical analysis suggests that the CES case is more relevant than Cobb-

Douglas. First, in Section 4, we find that the slope of the Engel curve is less than

1, in line with Proposition 4 and in contrast with Equation (9) under Cobb-Douglas.

Second, we will estimate spillover coefficients above 1 (though generally not statisti-

cally significantly above 1). Log-differentiating the expression for αw with respect to

both αz and αx, yields:

dαw
αw

=
αz

αx

1
ε(

αz

αx
− 1
)

1
ε
+ 1︸ ︷︷ ︸

Term 1

dαx
αx

+
1− 1

ε(
αz

αx
− 1
)

1
ε
+ 1︸ ︷︷ ︸

Term 2

dαz
αz

. (11)

This expression reflects how income inequality among doctors responds to changes in

inequality among widget makers
(
dαx

αx

)
and in doctors’ ability z

(
dαz

αz

)
. For ε = 1,

the expression becomes dαw

αw
= dαx

αx
and we recover the expression from Proposition 1.

In the complement case, ε < 1 (and αz ≤ αx <
αz

1−ε), the spillover effect from

income inequality of widget makers on doctors’ income inequality, Term 1, is greater

than one. In addition, Term 2 is negative: a growing spread in doctors’ ability (a

decrease in αz) reduces doctors’ income inequality (αw increases). This is because

as αz decreases, more top doctors compete for patients who are spending a declining

share of their income on health care as we move into the tail. The reverse holds in the

substitute case (ε > 1 and αx ≤ αz), where Term 1 is below 1 and Term 2 is positive.

Empirically, αz and αx are likely to be positively correlated: places with more

talent dispersion for widget makers are likely to also have more talent dispersion for
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doctors. Therefore, without a control for the (unobserved) physician ability distribu-

tion, the coefficient of an OLS regression of physician income inequality on widget

makers’ income inequality should suffer from a downward bias when the true coeffi-

cient is above 1—consistent with our findings in Section 6.1.

3.2.4 The role of non-divisibility and non-tradability

We next highlight two assumptions that are necessary for our result of local spillovers:

the non-divisibility and the non-tradability of the service.

First, to highlight the role of non-divisibility, consider the baseline model and

contrast health care services with a divisible consumption good, “beer.” That is, the

quality-adjusted quantity of beer enters the utility function. Beer is produced by

potential brewers, who, like potential doctors, have Pareto-distributed ability with

shape parameter αy. The quality-adjusted quantity of beer produced by a brewer

is proportional to their ability. Beer will therefore have a common quality-adjusted

price p, and the payment schedule for brewers will be linear in their ability. As such,

brewer income inequality is entirely determined by their ability distribution and not

the income distribution of widget makers.

Second, we permit trade in medical services across regions. Since our empirical

analysis will rely on local spillovers of income inequality, this extension explicitly

addresses predictions when services are not sold in a local market. Consider the

baseline model of Section 3.1, but with several regions indexed by s ∈ {1, . . . , S}.
We allow some patients (a positive share of rich widget makers) to purchase their

medical services across regions. The distribution of potential doctors’ ability is the

same in all regions, and so is the number of patients served per doctor, λ. The

other parameters—in particular the Pareto shape parameter of widget makers’ income

αsx—are allowed to differ across regions. It follows that in the top, national income is

asymptotically distributed with the lowest αsx, that of the most unequal region.

The cost of health care services must be the same everywhere; otherwise, the

widget makers who can travel would go to the region with the cheapest health care.

Therefore top talented doctors must all earn the same wage for the same ability. Since

national top income inequality for widget makers is mins α
s
x, doctors in all regions

must asymptotically have income inequality shape parameter of mins α
s
x (see details

in Appendix A.8). That is, there are national spillovers, but no local spillovers.21

21Formally, we show in a model with a continuum of agents, that the income distribution of
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It is important to recognize that spillovers still exist. An increase in income

inequality for the region with the highest income continues to determine the income

inequality of physicians (in all regions). However, an empirical analysis based on local

spillovers will fail to find an effect. Empirically, whether the service provided is “local”

(non-tradable) or “non-local” (tradable) will depend on the occupations of interest.

We will use these results to guide our empirical analysis.

3.3 Empirical predictions

To summarize, our model makes the following predictions (where “doctors” represent

all occupations that fit the assumptions): 1) High-earning patients are treated by

more expensive doctors; 2) An increase in local inequality will increase local inequality

for doctors if they serve the general population directly and their services are non-

divisible; 3) This is true regardless of whether doctors can move across regions, and

regardless of whether doctors’ ability is positively correlated with the income they

would receive in alternative occupations; and 4) If patients can travel easily, doctors’

income in each region does not depend on local income inequality, but on national

inequality. The remainder of this paper presents empirical tests of these predictions.

4 Assortative Matching with Health Spending

We begin by examining the model’s first prediction: assortative matching. We use

a nationally representative survey and medical claims data to measure the income

gradient of medical spending. Our mechanism requires not only that high-income

patients spend more on medical care but also that they visit higher-priced physicians.

We therefore measure physician prices using the method described below, and present

the income gradient of physician prices.

4.1 Institutional background and measurement of physician prices

The medical industry in the United States is not perfectly described by the flexible

price-setting model of Section 3.1. The government plays a substantial role through

doctors is approximately Pareto with shape parameter minαs
x above a certain cutoff for any positive

share of mobile patients. That cutoff depends positively on the share of mobile patients. In practice,
naturally, one would not expect national spillovers when only a small fraction of patients can travel.
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Medicare and Medicaid, the insurance sector has an important role as an intermedi-

ary, there is substantial information asymmetry between patients and doctors, and

patients sometimes travel for medical care. So, at first glance, our model might not

seem applicable to this industry. But these institutional intricacies need not inhibit

market forces—including our spillovers—from operating. In fact, they may offer a

mechanism that implements the forces our model discusses.

Although the government sets prices for those whose care it pays for directly,

providers’ negotiations with private insurers generally lead to higher prices in the

private market (Clemens and Gottlieb 2017). Even in the presence of asymmetric

information, patients often have clear beliefs about who the “best” local doctor in a

specific field is, whether or not these beliefs relate to medical skill or health outcomes

(Kolstad 2013; Epstein 2006; Steinbrook 2006). And, although patients occasionally

travel for care, a patient in Dallas is vastly more likely to seek medical care in Dallas

than in Boston (Dingel 2023).22 Therefore, despite these complications, the structure

of the health insurance industry may embody enough flexibility to incorporate the

economic pressures implied by our model.

We summarize physician prices by computing their markups over Medicare rates.

That is, if Medicare sets a reimbursement rate of rMj for treatment j, Clemens, Got-

tlieb, and Molnár (2017) show that private insurer i’s reimbursement to physician

group g for that treatment is often determined by ri,g,j = φi,gr
M
j , where φi,g is an

insurer-physician group constant, and these markups reflect economic pressures such

as physician market power. The markups can thus be used as a summary measure of

medical prices. Following Clemens (2017), we estimate these markups as the physi-

cian fixed effects in a regression on insurance claims data—data that record insurers’

payments to provider groups for specific treatments. Specifically, we run the following

regression at the level of each treatment j and physician g:

ln rg,j = φg + ln rMj + εg,j (12)

and interpret the estimates, φ̂g, as physician g’s (log) markup over Medicare.23

22Furthermore, our empirical strategy more heavily weights large metropolitan areas, which are
more likely to have a full portfolio of medical specialties available, implying less need to travel. Re-
gardless, our theoretical analysis suggests that national travel would reduce our estimated spillovers.

23In the interest of brevity, we refer the reader to Clemens, Gottlieb, and Molnár (2017) or
Clemens and Gottlieb (2017) for more institutional details about this price setting in the physician
context, and Ho (2009) or Gaynor and Town (2011) for the hospital context. Cooper et al. (2019)
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4.2 Data on medical spending and physician prices

Medical spending data. We first measure overall health care spending using data

from the Medical Expenditure Panel Survey, a detailed, nationally representative

survey of families’ health insurance coverage and medical spending. The survey is

conducted annually by the Agency for Healthcare Research and Quality and collects

information about specific medical expenditures and their costs. We aggregate med-

ical spending in 2015 to the family, the level at which income data are collected, and

consider those with incomes above $50,000 (N = 5, 436). We take logs of medical

spending and family income to estimate the income elasticity of spending.

Health insurance claims data. We measure Engel curves of physician prices using

the Colorado All-Payer Claims Data (APCD-CO), described in Clemens, Gottlieb,

and Molnár (2017). This dataset provides details on patient visits for physician care,

including the service provided (a five-digit code established by the Healthcare Com-

mon Procedure Coding System) and the identity of the physician providing treatment.

Crucially, it indicates the amount the physician was paid for each service, the insurer

providing coverage, whether the physician is in-network, and the patient’s residential

zip code. We focus on the “allowed charge” for in-network care.24

This provides the information necessary to estimate Equation (12). We estimate

(12) on micro data, and then match the physician fixed effects φ̂g to the patients who

see that physician. We approximate the patients’ income using the median family

income in their residential zip code.25 We compute the mean of physician markups

among all physician visits from patients in a given zip code z: φz = 1
Nvisit

∑
visit∈z

φ̂g.

We then regress this on log median family income in the zip code:

φz = µ0 + µ1 ln (median family income)z + εz.

We run this regression at the zip code level, weighting observations by the number of

underlying physician visits in that zip code.

apply this method to hospital pricing as well.
24Depending on the details of the patient’s insurance contract and whether the patient has reached

an annual deductible or out-of-pocket maximum, the patient or the insurer may have to pay the
physician’s fee for a particular treatment. But regardless of who is liable, the amount that the
physician expects to receive is governed by the rate negotiated between the physician and the insurer,
known in the industry as the “allowed charge.”

25We obtain data on median family income in each Zip Code Tabulation Area (areas that closely
approximate zip codes) from IPUMS NHGIS (Manson et al. 2017).
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Figure 2: Engel Curve for Medical Spending and Physician Prices
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Notes: Panel A shows the relationship between annual medical spending and annual income, both in logs. The dots
show mean values for each bin, computed as twenty vigintiles of family income. The line shows a linear regression
estimate on the micro-data, and reflects an elasticity of 0.44. Panel B shows an analogous relationship between log
markups (normalized to mean zero across physician groups) charged by the physician who treats a patient, and family
income (as proxied by the median income in the patient’s zip code of residence). This panel also shows a binned
scatter plot with 20 vigintiles, and the regression line reflects an elasticity of 0.20. Source: Authors’ calculations
using data from the Medical Expenditure Panel Survey and Colorado All-Payer Claims Data.

4.3 Results: medical spending, physician prices, and income

Figure 2 shows the results. Panel 2a plots the Engel curve for family medical spending.

The graph shows a binned scatter plot, using 20 vigintiles of family income and the

regression line computed on the micro data. The positive relationship is immediate

and reflects an elasticity of 0.44. That is, a 10 percent increase in family income is

associated with 4.4 percent more medical spending. A positive elasticity smaller than

1 is in consistent with the CES case described in Proposition 4.

To examine how much of this elasticity reflects differences in prices, as opposed to

quantity or composition of care, we move to the medical claims data from APCD-CO.

Panel 2b shows the results, with an elasticity of 0.20 between physician log markups

and log median family income.26

These facts indicate that the matching relationship implied by the model ap-

pears in the data. We now investigate our core prediction: within a local geographic

26The estimate of the price elasticity is likely to be biased down: The estimate behind Panel 2b
uses the log of median family income in a zip code whereas an unbiased estimate would require the
average of log income—or, better yet, a link to exact family incomes. This introduces a downward
bias when zip codes vary in their local log income inequality. Note also that physician-patient match-
ing is more complex in the real world than in our stylized model, with insurers linking physicians to
patients through different networks and insurance plans. This provides a mechanism for connecting
higher-income patients with higher-priced physicians.
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market, inequality spills over into occupations providing non-divisible services with

heterogeneous quality.

5 Empirical Strategy to Identify Spillovers

This section introduces the main empirical test of our model. Our goal is to estimate

the causal effect of general income inequality on income inequality within a specific

occupation. Our empirical strategy uses geographical variation in income inequality

across LMAs in the United States.

5.1 Income data

Our data come from the Decennial Census for 1980, 1990, and 2000, and the 2010-

2014 waves of the ACS (which, combined together, we refer to as 2012). We access

the restricted-use versions of each, which contain a larger sample of respondents and

less income censoring than public-use versions.27 We use 2010-2014 as opposed to

2008-2012 to avoid the immediate aftermath of the Great Recession, which had a

large impact on top incomes. We refer to this combined data set as Census data.

Data from before 1980 has substantially smaller samples, and we exclude them from

the analysis. Appendix B.2 discusses the definitions of occupations and geographic

locations (LMAs) that we use.

Motivated by our theoretical model, we measure a distribution’s top income in-

equality by its estimated Pareto parameter. Consider a set of observations {xi}Ni=1

drawn from a Pareto distribution with two parameters: the minimum value and

the Pareto parameter. The maximum likelihood estimate for the minimum value is

x̂min = min{xi}Ni=1 and for the Pareto parameter:

α̂−1 =
1

N

∑
i∈N

ln

(
xi
xmin

)
, (13)

27The detailed Decennial Census micro data long-form surveys one-sixth of the population. Each
of the five ACS samples is 3 percent, so combining them gives a sample of 15 percent. The income
numbers are inflated using the consumer price index such that all numbers are in 2014 prices.
Whereas the publicly available data is censored at around the 99.5th percentile of the overall income
distribution, the restricted data has very little censoring. For instance, in New York State only
around the top 0.1% of the population is censored. Among physicians the number is well below
0.5%.
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where N is the set of observations. That is, the estimate of the inverse Pareto

parameter is the average log distance of observations from the minimum (the chosen

cutoff value). So the estimated Pareto parameter is a measure of income inequality,

even if the distribution is not exactly Pareto. We adjust (13) for the small number of

censored observations (details in Appendix B).

One benefit of this approach is that the Pareto parameter can easily be translated

into relative incomes at different ranks of the income distribution. For a Pareto

distribution with parameter α, the relative income of somebody at the 99th percentile

compared to somebody at the 95th percentile is 51/α. The Gini coefficient is (2α−1)−1.

Guvenen, Karahan, Ozkan, and Song (2021) and Jones and Kim (2014) also employ

α−1 as a measure of income inequality.

Our focus on top income inequality requires choosing a threshold xmin. We set

this at the 90th percentile of the local income distribution for those with positive wage

income, since the Pareto distribution is generally a good fit in the top decile. We focus

on employed individuals older than 25. We need a reasonable number of observations

to compute local occupational income inequality, so we restrict the sample to LMAs

with at least 25 observations above xmin for each of the four years.28 Appendix B

further discusses this restriction and we provide various robustness checks below.

5.2 Income distribution statistics

We present several summary statistics on the wage income distribution. Our income

measure is pre-tax wage and salary income, and we focus on observations with positive

income. Appendix Table C.1 shows basic descriptive statistics in 2000 for the most

common occupations in the top decile of the national income distribution. It reports

each occupation’s mean income and the share of the top 1%, 5%, and 10% that the

occupation represents. Physicians are one of the most common occupations in the

top income distribution, accounting for 13 percent of the top 1 percent.

Table 1 shows the ratio of income at the 98th percentile to income at the 90th

percentile for physicians and the general population as well as the corresponding

ratio predicted by the inverse Pareto parameter, α̂−1. Here, we estimate α̂−1 based

28The regressions are therefore balanced. The number of observations shown in the regression
tables are not always divisible by 4 due to disclosure requirements which request that we only release
the number of observations rounded to the nearest multiple of 50. The underlying observation count
is always a multiple of 4.

24



Table 1: Wage income: Ratio 98/90: Actual Values and Predicted Values

General Population Physicians

Year α−1 Actual Predicted α−1 Actual Predicted

1980 0.34 1.70 1.72 0.25 1.50 1.50
1990 0.38 1.87 1.85 0.40 1.89 1.90
2000 0.42 2.00 1.96 0.33 1.75 1.71
2012 0.42 1.99 1.96 0.34 1.72 1.72

Notes: The inverse Pareto parameter, α−1, is calculated based on the top 10% of the relevant
national wage income distribution (general or physician). The predicted 98/90 ratio is calculated

based on the estimated Pareto coefficient as: 51/α.

on the top 10 percent of the national income distribution for the general population

and for doctors, respectively. The predicted and actual ratios agree closely, consistent

with a good fit to the Pareto distribution at the top of the income distribution.

Finally, we assess the extent to which the income distribution is Pareto at the local

level. We use the fact that a Pareto distribution implies a linear relationship between

log income and the log of the number of observations with a higher value.29 Due to

disclosure regulations we cannot state exact income numbers or export LMA-specific

information. Instead, we focus on the top 10 percent of the income distribution in

New York State. We bin the data into 20 equally spaced bins and plot the average

(log) value of the observations within a bin (the estimates of the Pareto parameter

in the rest of the paper are based on the underlying observations and not binned

data) in Figure 3. Panel 3a shows the relationship between log income and the log

number of observations overall, and Panel 3b for physicians specifically. The Pareto

fit is excellent for the general population. For physicians, the Pareto coefficient is

estimated on those in the top 10 percent of the entire local income distribution.

(This is in line with our regression analysis but differs from Table 1, which focuses

on the top 10 percent of physicians.) Given that a large share of physicians are in

the top 10 percent, the Pareto fit is less good. Regardless of whether the data are

exactly Pareto, recall that the inverse Pareto coefficient α−1 is a reasonable measure

of income inequality. In addition, we run robustness checks where we only use the

top 5 percent of the local income distribution, and Panel 3b shows that the Pareto

fit is better at higher incomes.30

29Formally, for a dataset with N observations of wages drawn from a Pareto distribution, the

expected share of observations with a value higher than x, Nx

N , is given by Nx

N =
(

x
xmin

)
−α. Hence,

we have: ln
(
Nx

N

)
= −α ln(x) + α ln(xmin), a linear relationship between ln

(
Nx

N

)
and ln(x).

30We compute α−1 on the top 10 percent in our regression analysis in order to have a sufficient
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Figure 3: Fit of the Pareto Distribution - New York State (2000)
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Notes: This figure shows the quality of fit of the empirical income distribution to the Pareto distribution using
observations from New York State in 2000. The left panel shows the top 10% among all occupations, and the right
panel shows physician in the top 10% of the total population. The horizontal axis shows the logarithm of incomes
split into 20 equal-width bins. The vertical axis shows the log number of observations in each bin. By construction,
the line must be downward-sloping, and linear if the underlying distribution is Pareto. The lines are a linear fit to
the binned observations, not the underlying Pareto parameter. Source: Authors’ calculations using Decennial data.

5.3 Empirical strategy

Regression framework. We aim to estimate the causal effect of a change in general

(population-wide) top income inequality in a region s on the change in top income

inequality for a particular occupation o in that region, say, physicians. Let α−1
o,t,s be

top income inequality for occupation o at time t for geographical area s and α−1
−o,t,s

be the corresponding value for the general population in s except for o. Let γs be

a dummy for the geographical area, γt a time dummy, and Xt,s a vector of controls,

including the area’s population and average income. The regression of interest, at the

area-occupation-year level, is:

ln
(
α−1
o,t,s

)
= γs + γt + βo ln

(
α−1
−o,t,s

)
+Xt,sδ + ϵo,t,s. (14)

The coefficient βo measures the elasticity of top income inequality for our occupation

of interest with respect to general income inequality. We estimate regression (14) by

using the Census income data described above to compute both α−1
o,t,s and α

−1
−o,t,s for

1980, 1990, 2000, and 2012. Throughout our estimation, we cluster standard errors by

LMA and weight LMA-years by the number of underlying members of the occupation

of interest (above xmin).

number of observations.
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Instrument. One would naturally worry about reverse causality and omitted vari-

ables when estimating Equation (14). Even controlling for LMA and year fixed effects,

a positive correlation between general income inequality and income inequality for a

specific occupation might reflect deregulation, changes in the tax system, or common

local economic trends—rather than a causal effect from general income inequality to

inequality for the occupation of interest. Some of these might lead to an upward

bias in our estimate. Our mechanism itself could generate reverse causality: inequal-

ity within the outcome occupation might spill over into other occupations on the

right-hand side of the regression. As Section 3.2.3 explained, unobserved positive cor-

relation between the ability distribution of the occupation of interest and the general

population could lead to a downward bias.

To address these concerns, we use a “shift-share” instrument (Bartik, 1991) based

on the occupational distribution across geographic areas in 1980. We define:

I−o,t,s =
∑

κ∈K−o,s

ωκ,1980,sα
−1
κ,t,−s, for t ∈ {1980, 1990, 2000, 2012}, (15)

whereK−o,s is the set of the 20 most important occupations in the top 10 percent of the

income distribution of LMA s in 1980 (excluding occupation o). The corresponding

share in 1980 of these occupations κ ∈ K−o,s is denoted ωκ,1980,s. (In robustness

exercises we exploit other choices of occupation sets K−o,s.) α−1
κ,t,−s is the inverse

Pareto coefficient for occupation κ in year t in the entire United States, excluding the

LMA of interest s. We then estimate Equation (14) via two-stage least squares, using

ln(I−o,t,s) as an instrument for ln
(
α−1
−o,t,s

)
.

The source of variation in our instrument is best illustrated by a decomposition

of the endogenous variable, income inequality for the general population. Let O−o,s

be the set of all occupations in LMA s for which there are observations with incomes

above xmin during the time periods of study, excluding the occupation of interest

o. Let ω̃κ,t,s be the corresponding occupation shares where
∑

κ∈O−o,s
ω̃κ,t,s = 1. The

estimator of the inverse Pareto parameter in (13) implies that we can decompose the

common estimate of α−1
−o,t,s for a set of occupations O as α−1

−o,t,s =
∑

κ∈O−o,s
ω̃κ,t,sα

−1
κ,t,s

(where ακ,t,s is irrelevant if an occupation does not appear in year t). We exploit this

to write our right-hand side measure of inequality as:
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α−1
−o,t,s =

∑
κ∈O−o,s

ω̃κ,1980,sα
−1
κ,t,−s︸ ︷︷ ︸

National trends

+
∑

κ∈O−o,s

(
α−1
κ,t,s − α−1

κ,t,−s

)
ω̃κ,1980,s︸ ︷︷ ︸

Local inequality shocks

+
∑

κ∈O−o,s

α−1
κ,t,s (ω̃κ,t,s − ω̃κ,1980,s)︸ ︷︷ ︸

Changes in occupational composition

,

(16)

which decomposes the change in local inequality into three terms. The first term

captures national trends in occupational income inequality, on which we base our

instrument.31,32 Our IV estimation therefore only exploits the changes in labor mar-

ket income inequality that arise from the occupational distribution in 1980 combined

with nationwide trends in occupational inequality. By using these national trends,

our instrument relies on variation associated with national shocks exogenous to the

LMA, such as the effects of globalization, technological change, or deregulation. These

shocks would affect LMAs differently depending on their occupational composition,

in line with a change in αx in our theoretical model. The two other terms in Equation

(16) capture local changes in the LMA during our time period. The second term

captures changes in local occupational income inequality relative to the average trend

in the rest of the United States. The third term captures changes in the local occupa-

tional distribution. Neither of these two terms can plausibly be considered exogenous

to a particular occupation of interest o.

We adopt the Goldsmith-Pinkham, Sorkin, and Swift (2020) framework for eval-

uating shift-share instruments. They show that a sufficient condition for the validity

of a shift-share instrument is that the original weights are conditionally exogenous.

Our instrument will be valid if the original occupational composition only affects

changes in local top inequality for the occupation of interest through changes in local

top income inequality (changes, rather than levels, because we include LMA fixed

effects). One concern would be that occupation composition may also affect changes

in average incomes, which is why we directly control for this channel. For instance, it

might be that in an area with many financial managers, physicians have been able to

get better access to credit over time, which has enabled the best of them to expand

their offices and earn higher incomes. As long as this effect doesn’t work through

31Technically for our instrument, we only include the top 20 occupations in 1980 in K−o,s and
normalize the weights to sum to one (which is why ωκ,1980,s and ω̃κ,1980,s differ).

32Mazzolari and Ragusa (2013) use a similar approach to instrument for the level of income for
high-earners in cities based on pre-sample city-specific occupational distribution and national trends
in top income growth.
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Table 2: Summary Statistics For Regression Variables

Physicians Dentists Real estate sales occ.

Std Std Std
Mean Dev N Mean Dev N Mean Dev N

ln(α−1
o ) −0.15 0.17 750 −0.42 0.13 150 −0.69 0.14 200

ln(α−1
−o) −0.99 0.16 750 −0.92 0.14 150 −0.93 0.14 200

ln(I) −1.00 0.07 750 −0.91 0.05 150 −0.92 0.05 200

α−1
o 0.87 0.15 750 0.66 0.08 150 0.51 0.07 200

α−1
−o 0.37 0.06 750 0.40 0.06 150 0.40 0.06 200

I 0.26 0.03 750 0.30 0.02 150 0.29 0.02 200

Notes: This table shows basic summary statistics for the variables in our different occupation

regressions. ln(α−1
o ) is the logarithm of the inverse Pareto parameter for the occupation of

interest in a given LMA × year. ln(α−1
−o) is the logarithm of the inverse Pareto parameter for

the local population excluding the occupation of interest. Both are based on the top 10% of the
wage income distribution in a given LMA × year. ln(I) is the instrument: the logarithm of the
projected income inequality in a given LMA × year based on the occupational distribution in
1980 (see details in text). N is the number of observations rounded to the nearest multiple of 50
as required by disclosure rules.

the income inequality of financial managers, this will not bias our results. In addi-

tion, differences in credit access would be captured by the LMA fixed effect. We run

robustness checks where we exclude financial managers from the instrument.33 We

discuss our shift-share setting further in Section 6.2 and in Appendix C.3.

Summary statistics for the regression variables. Our first regression results focus on

three occupations for which we expect to see spillovers, namely physicians, dentists,

and real estate agents. Table 2 presents summary statistics for the main variables in

these regressions. Note that the sample size varies because of our requirement that

each LMA has sufficient observations to compute our dependent variable.34

6 Empirical Spillover Estimates

This section presents our empirical estimates of spillovers across occupations. We

first focus on a set of occupations for which we expect to find spillovers. We present

33The alternative view on shift-share instruments articulated by Borusyak, Hull, and Jaravel
(2022) relies on the exogeneity of the shocks, namely here, trends in occupational inequality. This
assumption is likely violated in our case; inequality trends are likely correlated across occupations
for reasons other than our spillover through consumption mechanism.

34The average inverse Pareto coefficients in Table 2 differ from the ones reported in Table 1
particularly for physicians. There are two reasons for this: First, in Table 2, Pareto coefficients
are calculated for physicians in the top 10 percent of the overall population instead of the top 10
percent of physicians. Second, Table 2 shows the unweighted mean of Pareto coefficients in each
labour market area (using local cutoffs) instead of a national Pareto coefficient.
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the spillover estimates in Section 6.1 and conduct several robustness checks in section

6.2. We then compute spillover coefficients for most of the 30 biggest occupations in

the top 10 percent of the income distribution and correlate these spillover coefficients

with occupation characteristics in Section 6.3.

6.1 Testing the model when spillovers are predicted: physicians,

dentists and real estate agents

Our central occupations of interest where we expect spillovers are physicians, den-

tists, and real estate agents. Physicians are a major occupation in the top of the U.S.

income distribution (see Appendix Table C.1). They fit our theory well since they

provide a service that is heterogeneous in quality, non-divisible, and primarily serve

the local market. Dentistry is similar to other medical services but it involves fewer

intermediaries and is less regulated. Real estate agents are another occupation com-

mon in the top of the U.S. income distribution. Real estate services are non-divisible

since home sellers usually only contract with one real estate agent.35

Physicians. Table 3 presents the estimates of Equation (14) for physicians. Column

(1) shows the OLS regression of physicians’ income inequality on general income in-

equality including year and LMA fixed effects. We find an elasticity of 0.16. This

elasticity increases slightly in Column (2), where we include controls for LMA pop-

ulation and average wage income among those with positive wage income. Columns

(3) and (4) show the first-stage regression using our instrument. The instrument has

a reasonable predictive effect on the endogenous variable with F around 8.

Columns (5) and (6) present IV results: Income inequality from the broader pop-

ulation spills over to physician income inequality with an estimated elasticity of 1.5

in the model with controls. From 1980 to 2012, wage income inequality as measured

by the inverse Pareto parameter rose by 24 percent with a corresponding increase

for physicians of 34 percent. So a spillover elasticity of 1.5 can plausibly explain the

entire rise of income inequality for physicians of 36 percent, although the contribution

is measured with uncertainty. Log population size has little conditional relationship

with physician income inequality, whereas log average income predicts lower income

35Furthermore, the fee structure in real estate is often proportional to housing prices (Miceli,
Pancak, and Sirmans, 2007), and the increase in the spread of housing prices is consistent with the
increase in income inequality (Määttänen and Terviö, 2014).
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Figure 4: Graphical Representation of the IV Regression: residual top income inequality.
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inequality. Including the controls does not alter the coefficient of interest in the IV

regressions.

Table 3: Spillover Estimates for Physicians

OLS 1st Stage IV

Dependent variable ln(α−1
o ) ln(α−1

o ) ln(α−1
−o) ln(α−1

−o) ln(α−1
o ) ln(α−1

o )

(1) (2) (3) (4) (5) (6)

ln(α−1
−o) 0.16∗∗ 0.22∗∗∗ 1.74∗∗ 1.50∗∗

(0.08) (0.06) (0.75) (0.70)
ln(Average Income) −0.40∗∗∗ 0.17∗∗∗ −0.60∗∗∗

(0.09) (0.05) (0.14)
ln(Population) −0.02 −0.06 0.07

(0.03) (0.04) (0.07)
ln(I) 0.70∗∗∗ 0.70∗∗∗

(0.24) (0.26)

LMA FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 750 750 750 750 750 750
F -Statistic 8.65 7.43

Notes: This table shows OLS and IV regressions of local top income inequality among physicians
on top income inequality in the local population. Top income inequality for physicians is measured

by log of the inverse Pareto parameter α−1
o estimated in each LMA among physicians in the top

10% of the local income distribution. Local income inequality is measured by the log of the inverse

Pareto parameter α−1
−o for the local population excluding physicians in the top 10% of the local

income distribution. ln(I) is our instrument and captures the projected occupational income in-
equality from national trends by interacting local occupational composition with national trends in
inverse Pareto parameters for each occupation (see details in text). Column (1) shows the OLS re-
lationship only including LMA and year fixed effects. Column (2) adds controls for average income
among individuals with positive income and population. Columns (3) and (4) show the first stage
regressions. Finally, Columns (5) and (6) show the IV regressions. N is the number of observations
rounded to the nearest multiple of 50. Observations are weighted by the number of uncensored
physicians in the top 10% of the local income distribution. * p<0.1, ** p<0.05, ***p<0.01.

Figure 4 shows the IV results graphically in two binned scatter plots. In Panel
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4a, we show the relationship between the shift-share instrument and non-physician

inequality, i.e., the first-stage regression. Both of these are residuals based on re-

gressions with year and LMA dummies and the controls of column (6) in Table 3.

For disclosure reasons we bin our LMA × year observations into 20 bins with equal

number of underlying individuals. We plot the average value of the residuals in each

bin. Panel 4b shows the relationship between the instrument and physicians’ inequal-

ity, i.e., the reduced form regression. In both cases, we see strong upward-sloping

relationships. The results are not driven by outliers.

Dentists and real estate agents. We next show the corresponding results for dentists

and real estate agents. We still require that LMAs contain at least 25 observations

in the occupation of interest in the top 10 percent in order to compute local top

income inequality for that occupation. Therefore, the number of LMAs included in

the regressions is substantially lower for both dentists and real estate agents, though

the F statistics remain similar. The results are given in Table 4. The estimates from

the IV regression with controls are 1.33 and 1.22, close to that for physicians. The

most notable difference is that the OLS coefficients are substantially higher. The OLS

and IV estimates for real estate agents are nearly identical. Based on the estimated IV

spillovers, the predicted increases in income inequality are 32% and 29% for dentists

and real estate agents, respectively. This is larger than the actual increases of 22% and

18%, respectively, though the actual increase is well within the confidence interval.

Relationship between OLS and IV results. For physicians and dentists, the IV

results are substantially higher than the OLS correlations. There are three main

reasons. First, the augmented model with a CES utility function predicts a downward

bias in the OLS relationship in the empirically relevant case when ε < 1. We show this

mathematically in Section 3.2.3: the bias arises from unobserved correlations between

inequality in local doctors’ ability and local consumers’ ability.36 Second, there are

numerous potential omitted variables. For example, more unequal places might have

36A likely explanation for the similarity of the IV and OLS estimates for real estate agents is the
higher elasticity of the Engel curve for housing. Subsection 3.2.3 showed that an elasticity of sub-
stitution between medical services and other goods substantially less than one has two implications:
The Engel curve has an elasticity substantially below one, and the OLS estimate is biased down-
ward if the ability distribution of doctors and the general population are correlated. For physicians,
Figure 2 implies an elasticity of the Engel curve of around 0.44. But for real estate, Zabel (2004)
finds elasticities of the Engel curve to be 0.64-0.70 for high-income families. This suggests a higher
elasticity of substitution for housing than medical services, therefore less of a downward bias in the
real estate OLS coefficient.
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higher taxes and spend more public money on health care. This would support the

incomes of those physicians who are not at the top of the income distribution. Third,

we estimate inequality in the general population with error. Since this is an estimate

from a small sample, we would expect the estimated α−1
−o,t,s to suffer from classical

measurement error, again biasing the OLS estimate down.

Table 4: Spillover Estimates for Dentists and Real Estate Agents

Panel A: Dentists

OLS 1st stage IV

Dependent variable ln(α−1
o ) ln(α−1

o ) ln(α−1
−o) ln(α−1

−o) ln(α−1
o ) ln(α−1

o )

(1) (2) (3) (4) (5) (6)

ln(α−1
−o) 0.60∗∗∗ 0.58∗∗∗ 1.29∗∗ 1.33∗

(0.20) (0.19) (0.63) (0.69)
ln(Average Income) 0.12 0.10 0.05

(0.18) (0.07) (0.20)
ln(Population) −0.01 -0.02 0.02

(0.08) (0.05) (0.11)
ln(I) 2.24∗∗∗ 2.20∗∗∗

(0.67) (0.74)

LMA FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 150 150 150 150 150 150
F -Statistic 11.31 8.89

Panel B: Real Estate Agents

OLS 1st stage IV

Dependent variable ln(α−1
o ) ln(α−1

o ) ln(α−1
−o) ln(α−1

−o) ln(α−1
o ) ln(α−1

o )

(1) (2) (3) (4) (5) (6)

ln(α−1
−o) 1.20∗∗∗ 1.17∗∗∗ 1.25∗∗ 1.22∗∗

(0.15) (0.15) (0.54) (0.57)
ln(Average Income) 0.14 0.16∗∗ 0.13

(0.18) (0.07) (0.16)
ln(Population) 0.00 −0.03 0.00

(0.05) (0.05) (0.06)
ln(I) 2.00∗∗∗ 1.91∗∗∗

(0.65) (0.69)
LMA FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 200 200 200 200 200 200
F -Statistic 9.60 7.56

Notes: This table shows OLS and IV regressions of local top income inequality among
dentists (Panel A) and real estate agents (Panel B) on top income inequality in the local
population. The variables are defined analogously to Table 3. Column (1) shows the OLS
relationship only including LMA and year fixed effects. Column (2) adds average income
and population. Columns (3) and (4) show the first-stage regressions. Finally, Columns
(5) and (6) show the IV regressions. Further details are in Table 3. * p<0.1, ** p<0.05,
*** p<0.01.
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6.2 Robustness checks

This section presents several robustness checks on the spillover results. We first inves-

tigate various issues specific to physicians. We then show that our results are robust

to measuring inequality in levels instead of the log-linear specification. We show

that the results are robust to excluding the occupations with the largest Rotemberg

weights from the IV. Finally, we show robustness checks for our various cutoffs. This

subsection discusses the results and we refer the reader to Appendix C.2 for tables.

Issues specific to physicians. In Appendix Table C.2, we investigate three issues

specific to physicians. First, Gottlieb et al. (2020) show that a substantial share of

top physician income is business income. The census data provides information on

wage income, business income, and capital income; we define “earned income” as the

sum of wage income and business income. We calculate top income inequality for

physicians’ earned income in the same manner as for wage income and replace the

dependent variable. We leave the instrument and the RHS variables unchanged. The

IV coefficient remains similar to that of Table 3.

Second, pay varies considerably across different specialties of medicine. Given that

our physician occupation category includes all physicians, we could potentially pick

up compositional effects across specialties. To address this, we build controls for the

share of physicians in different specialties.37 The IV coefficient drops slightly to 1.12

and remains significant.

Specification using levels. Our baseline analysis measures inequality using log of the

inverse Pareto parameter. In Appendix Table C.3, we rerun our baseline regressions

using the level of income inequality for physicians, dentists, and real estate agents.38

We similarly find evidence of inequality spillovers for the three occupations with this

37We use data from the Area Resource File on the composition of specialties across LMAs (we
use numbers from 1985 for year 1980) and data from the Medical Group Management Association
(2009) on average and standard deviation of income by specialty in 2008. We build four control
variables: the share of neurosurgeons, who are the specialty with the highest mean income and the
largest standard deviation; the share of physicians in the 8 highest earning specialties (excluding
neurosurgeons); the share of physicians in the 7 specialties with the lowest income; and the share
of physicians in the 4 specialties with the largest standard deviation in income (excluding neuro-
surgeons). The rationale behind the two income groups of specialties is that these specialties share
similar average incomes while the next specialty (down or up) in the ranking has a substantially
different average income.

38The weights of the top 20 occupations in the top 10 percent of the local income distribution
are not normalized to sum up to 1 in this specification. We control for the share of individuals in
other occupations in the top 10 percent interacted with a year dummy (Goldsmith-Pinkham 2020).
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functional form.

Shift-share robustness checks. Since our identification relies on the exogeneity of the

occupational shares, we follow Goldsmith-Pinkham, (2020) and show the 15 largest

(in absolute terms) Rotemberg (1983) weights in Appendix Table C.4.39 The three

occupations with the largest Rotemberg weights are Financial Service Sales (0.34),

Financial Managers (0.22), and Lawyers and Judges (0.19). We exclude, in turn,

the five occupations with the highest Rotemberg weight from the IV in our baseline

regression for physicians. Appendix Table C.5 reports the results and shows that the

coefficient of interest is very stable. In Appendix C.3, we also show a regression which

includes the Adão, Kolesár, and Morales (2019) standard errors.

Our data construction relies on a number of cutoffs. We use alternative cutoffs

in Appendix Table C.6 for physicians. First, we base our regressions on the top 5

percent of the income distribution instead of top 10%. Our results are, if anything,

statistically stronger. We change our rule for selecting LMAs by requiring there to be

either at least 40, or at least 15, individuals of the occupation of interest in the top

10 percent of the local income distribution for each year (compared with 25 in the

baseline). Finally, we build our IV based on the 30 or 15 most common occupations

in the top 10 percent of the local income distribution (instead of 20). In all cases, we

find similar coefficients.

Appendix Table C.6 reproduces the same exercises for dentists and real estate

agents. We find broadly consistent results, though we lose statistical power for dentists

and real estate agents when considering the top 5 percent of the income distribution.

This reflects the fact dentists and real estate agents are less numerous in the top 5

percent so our inequality measures are computed on fewer observations.

6.3 Testing the model for other top occupations

Placebo occupations. We now carry out analogous regressions for other common

occupations in the top 10 percent of the wage income distribution. We first focus on

selected occupations for which we do not expect to see spillovers, namely financial

managers, managers (excluding those in real estate), and engineers. Workers in these

occupations generally do not produce a non-divisible good or service for the local

39To do that, we move to a linear setting where we use the same set of occupations in the
instrument for all LMAs.
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population. Managers and engineers work for firms that produce a variety of goods

and services for both the local and national markets.40 Likewise, financial managers

also work for firms: they “plan, direct, or coordinate accounting, investing, banking,

insurance, securities, and other financial activities of a branch, office, or department

of an establishment” according to the Standard Occupational Classification scheme.

Table 5: Spillover Estimates for Financial Managers, Managers, and Engineers

Financial Managers Managers, excl. real estate Engineers

OLS 1st stage IV OLS 1st stage IV OLS 1st stage IV
(1) (2) (3) (4) (5) (6) (7) (8) (9)

ln(α−1
−o) 0.71∗∗∗ −1.73 0.33∗∗∗ −0.28 0.51∗∗∗ −0.86

(0.16) (1.23) (0.04) (0.21) (0.09) (0.60)
ln(Average Income) 0.56∗∗∗ 0.13∗∗ 0.83∗∗∗ 0.02 0.16∗∗ 0.14∗∗ −0.19 0.06 −0.11

(0.19) (0.05) (0.24) (0.05) (0.07) (0.06) (0.12) (0.05) (0.14)
ln(Population) −0.15* −0.05 −0.29 0.12∗∗∗ −0.12∗∗∗ 0.05 0.20∗∗∗ −0.07∗∗∗ 0.10

(0.08) (0.04) (0.19) (0.02) (0.04) (0.03) (0.05) (0.02) (0.07)
ln(I) 1.11∗∗∗ 0.51∗∗∗ 0.71∗∗∗

(0.31) (0.11) (0.18)

LMA FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 450 450 450 1500 1500 1500 1000 1000 1000
F -Statistic 12.50 19.83 16.38

Notes: This table shows OLS and IV regressions of local top income inequality for selected occupations, where we do
not predict spillovers, on top income inequality in the local population. The variables are defined analogously to Table 3.
Columns (1)-(3) look at financial managers, Columns (4)-(6) at managers (excluding real estate), and Columns (7)-(9) at
engineers. Columns (1), (4) and (7) show OLS regressions. Columns (2), (5) and (8) show first-stage regressions. Columns
(3), (6) and (9) show the IV results. All regressions include controls for local population and average income, LMA and
year fixed effects. N is the number of observations rounded to the nearest integer divisible by 50. * p<0.1, **p<0.05,
***p<0.01.

Table 5 reports regression results (OLS, first stage, and IV including the con-

trols) for these three occupations. The OLS estimates are significant throughout and

comparable to those for physicians, dentists, and real estate agents. However, the

IV coefficients are statistically indistinguishable from zero and are all negative. The

positive OLS estimates and non-significant IV estimates demonstrate that spurious

correlation between general inequality and occupational inequality at the local level

is likely but that our instrument addresses this concern.

40An assignment mechanism may exist for managers but then managers’ income inequality would
reflect firm size inequality (as in Gabaix and Landier 2008) rather than local income inequality .
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Table 6: Spillover Estimates for a Broad Set of Occupations

Occupation OLS OLS SE IV IV SE F-stat t-stat N

Financial managers 0.71∗∗∗ (0.16) −1.73 (1.23) 12.50 3.54 450
Managers of properties and real estate 0.92∗∗∗ (0.32) 1.32 (0.91) 11.00 3.32 100
Managers, excl. real estate 0.33∗∗∗ (0.04) −0.28 (0.21) 19.83 4.45 1,500
Accountants and auditors 0.73∗∗∗ (0.12) 0.16 (0.47) 13.37 3.66 500
Other financial specialists 0.46∗∗∗ (0.17) −0.06 (0.68) 12.85 3.58 300
Engineers 0.51∗∗∗ (0.09) −0.86 (0.60) 16.38 4.05 1,000
Systems analysts and scientists 1.07∗∗∗ (0.28) 1.48∗∗ (0.70) 12.24 3.50 250
Physicians 0.22∗∗∗ (0.06) 1.50∗∗ (0.70) 7.43 2.73 750
Dentists 0.58∗∗∗ (0.19) 1.33∗ (0.69) 8.89 2.98 150
Lawyers and judges 0.20 (0.15) −0.52 (0.53) 15.67 3.96 450
Computer programmers 0.96∗∗ (0.42) −2.57 (1.63) 12.42 3.52 150
Sales supervisors and proprietors 0.43∗∗∗ (0.08) −0.06 (0.47) 15.30 3.91 950
Real estate sales occupations 1.17∗∗∗ (0.15) 1.22∗∗ (0.57) 7.56 2.75 200
Financial service sales occupations 0.8 ∗∗∗ (0.17) 0.70 (0.55) 10.93 3.31 150
Sales occupations and sales representatives 0.62∗∗∗ (0.07) −0.09 (0.36) 15.41 3.93 800
Supervisors of construction work 0.49∗∗∗ (0.15) 0.44 (0.62) 12.92 3.59 450
Production supervisors or foremen 0.69∗∗∗ (0.19) −1.53 (1.13) 10.63 3.26 500
Driver/sales workers and truck drivers 0.82∗∗∗ (0.25) 1.40 (0.92) 9.97 3.16 450

Notes: This table shows the OLS and IV coefficients for regressions of local top income inequality for some occupations
on top income inequality in the local population excluding that occupation. The occupations shown are the 28 most
common occupations in the top 10% of the income distribution, excluding those with an F statistic smaller than 7.
Each row corresponds to the regressions for a given occupation. The variables are defined analogously to Table 3 and
regressions include controls for local population, average income, LMA and year fixed effects. Columns (1) shows the
OLS coefficient, columns (2) the OLS standard error, column (3) the IV coefficient, Column (4) the IV standard error,
Column (5) the F statistic for the excluded instrument, Column (6) the IV t-statistic and Column (7) the number of
observations, rounded to the nearest multiple of 50. The number of observations varies because we only include LMAs
with at least 20 members of the occupation of interest in the top 10% of the local income distribution. * p<0.1, **
p<0.05, *** p<0.01.

Top occupations in the top 10 percent of the income distribution. We now take a

more systematic look at the most common 30 occupations in the top 10 percent of

the U.S. income distribution. We restrict attention to occupations with at least 20

LMAs that satisfy our requirement of enough observations in the top 10 percent of

the income distribution to compute local occupational income inequality. This leaves

us with 28 occupations, including the six already considered. Table 6 reports the

results for all occupations with an F statistic greater than 7.41 The only occupations

with a significant coefficient at the 10 percent level are our occupations of interest

(physicians, real estate agents, and dentists) plus “computer systems analysts and

computer scientists.” Computer scientists do not fit our theory and we think of their

case as one false positive out of 28 occupations (unsurprising at p < 0.05).

The remaining occupations can be thought of in two groups. First, those occupa-

tions for which our theory does not apply: the placebo occupations already mentioned,

computer programmers, and production supervisors. Second, a group of occupations

41We omit occupations with an F statistic below 7 since their IV estimates are likely subject to
weak instruments bias. None of them has a significant coefficient in the second stage.
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including subcategories for which our theory would apply and subcategories for which

it would not. For instance, “lawyers and judges”contain both corporate lawyers—who

work for firms and for which we would not expect to see spillovers—and personal

attorneys—for which our mechanism would likely apply. Similarly, financial sales oc-

cupations cover both individuals working for firms and personal finance managers for

which our theory is more likely to apply, albeit perhaps at the national level. The

fact that we do not find spillovers for a broad range of occupations also suggests that

our results do not originate from a “‘keeping up with the Joneses effect” (see, e.g.,

Bertrand and Morse, 2016).

Relationship with occupation characteristics. Our model predicts a higher local

spillover coefficient for occupations where production has to be local, and for those

that directly serve the public. To test these predictions, we correlate the IV spillover

coefficients with these occupational traits. To quantify local production, we treat

Blinder’s (2009) offshorability measure as an (inverse) measure of the extent to which

an occupation serves the local market; the extent to which an occupation can be

performed abroad is an inverse proxy for the extent to which it has to be performed

in the local area. To quantify direct public interaction, we rely on measures from the

Occupational Information Network (O*NET) of the importance of customer service

and working with the public. Appendix B.3 gives further details.

Since spillover coefficients are estimated with varying precision, we divide them

by their standard errors; that is, we correlate the t-statistic with occupational traits.

This is equivalent to a regression of the spillover coefficient on the occupational trait

weighted by the inverse standard error of the spillover coefficient. The scatter plots

in Figure 5 show the results. Consistent with our model, Panel 5a shows a strong

negative relationship between the spillover coefficient and offshorability (p = 0.019).42

Panels 5b and 5c show positive relationships between the spillover coefficient and

measures of customer service and working with the public (p = 0.012 and p = 0.028).43

These patterns support our model: With one exception, we only observe lo-

cal spillovers for the occupations that fit the model’s predictions of delivering non-

42Alternatively, one could split the occupations up into a group of 16 which Blinder (2009) consider
non-offshorable and one of 12 with some extent of offshorability. The means of these two groups are
statistically significantly different and the coefficient for the offshorable group is insignificant.

43Appendix Table C.8 presents the regressions corresponding to Figure 5, and adds two regressions
where we use the importance measures for the customer service and working with the public variables.
These additional regressions also show positive relationships. Restricting attention to occupations
with F > 7 delivers essentially the same results.
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divisible goods or services of heterogeneous quality, and serving the local market.

Figure 5: IV Estimates and Occupational Characteristics.
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Notes: This figure shows the relationship between the t-stat of the spillover coefficients from the IV regressions (from
Table 6) and three characteristics of occupations. These are a measure of offshorability from Blinder (2009) as well
as two measures from O*NET: Level of “Customer service and personal service” from Knowledge Requirements and
level of “Performing for or working directly with the public” from Work Activities. O*NET measures are rescaled as
percentiles. We use 28 occupations which are those amongst the biggest 30 occupations in the top 10% with at least
20 LMAs for the IV regressions

Quantifying indirect spillovers The workers experiencing spillovers in our model are

themselves consumers. Our model implies that increasing doctors’ income inequality

generates further spillovers on other workers whose output doctors consume. We

conclude by quantifying these indirect spillovers, to calculate the effect on total income

inequality of an exogenous increase in one occupation’s inequality.

Consider the total set of occupations among top earners, Ω, and let ΩSO ⊂ Ω,

be the subset which experience inequality spillovers. We assume that inequality of

occupation i ∈ ΩSO follows ln(α−1
i ) = βi ln(α

−1) + κi, as in equation 14, where βi is

the spillover estimated in section 6 for occupation i and κi is a constant. The income

inequality of the occupations not in ΩSO are exogenous to the model. By definition,

aggregate income inequality in the top is α−1 =
∑

i∈Ω ωiα
−1
i , where ωi is occupation

i’s share of top earners so
∑

i∈Ω ωi = 1.

Suppose income inequality among workers in occupation 1 ̸∈ ΩSO increases for

some exogenous reason; dα−1
1 > 0. The direct effect of occupation 1’s inequality on

overall inequality is proportional to the occupation’s weight: dα−1 = ω1dα
−1
1 . With

spillovers, inequality will also increase for occupations in ΩSO, who generate further

spillovers on themselves and each other. This is akin to a Keynesian multiplier.

Adding up these spillovers yields a total effect of:

dα−1 =
1

1−
∑

i∈ΩSO βi
ωiα
αi

× ω1dα
−1
1 . (17)
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For concreteness, consider our focal occupations—physicians, dentists and real es-

tate agents—which together constitute 15.8 percent of the top one percent of earners.

Combining our estimates of β̂i with each occupation’s share, we find a multiplier ef-

fect of (1 − 0.19)−1 = 1.24; that is, the impact on total top inequality is 24 percent

higher than without spillovers. Recall that our estimation procedure only captures

local spillovers, and if other occupations have national spillovers, the total multiplier

effect would increase.

7 Conclusion

This paper documents that the majority of the increase in top income inequality in

the United States is within occupations. We develop a new theoretical framework

where an increase in top income inequality in one occupation can spill over through

consumption to other occupations that provide non-divisible services directly to cus-

tomers, such as physicians, dentists, and real estate agents. We show empirically that

changes in local income inequality do indeed spill over to these occupations. The ef-

fect is large enough to explain the increase in income inequality for these occupations.

In contrast, we find no such spillover effects for occupations not fitting our theory.

Our analysis suggests that the increase in top income inequality across most oc-

cupations observed in the last 40 years may not require a common explanation. In-

creases in inequality for bankers or CEOs due to deregulation or globalization may

have spilled over to other high-earning occupations, increasing top income inequality

broadly. While we have emphasized positive results, the theory has an important

normative implication: Increasing inequality in the prices of non-divisible services

implies that welfare inequality does not rise as much as nominal income inequality.
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Online Appendix to supplement:

“The Spillover Effects of Top Income Inequality”

Joshua D. Gottlieb, David Hémous, Jeffrey Hicks, and Morten Olsen

A Theory Appendix

A.1 Positive assortative matching in equilibrium

This appendix establishes the following lemma.

Lemma 1. The equilibrium features positive assortative matching between the income of the

patient and the skill of the doctor if the utility function has a positive cross-partial derivative.

Since CES and Cobb-Douglas functions have positive cross-partial derivatives, then this

lemma applies in particular to the utility functions considered in our paper.

Proof. We prove the result by contradiction. Consider two individuals, 1 and 2, with income

x1 < x2 whose consumption bundles are that z1 > z2 and c1 < c2. Utility depends on zand the

remaining disposable income x− ω (z). Since widget maker 1 chooses a doctor of quality z1, it

must be the case that:

u (z1, x1 − ω (z1)) ≥ u (z2, x1 − ω (z2)) .

Further, we have:

u (z1, x2 − ω (z1))− u (z2, x2 − ω (z2))

= u (z1, x2 − ω (z1))− u (z1, x1 − ω (z1)) + u (z1, x1 − ω (z1))− u (z2, x1 − ω (z2))

+ u (z2, x1 − ω (z2))− u (z2, x2 − ω (z2))

=

∫ x2−ω(z1)

x1−ω(z1)

(
∂u

∂c
(z1, c)−

∂u

∂c
(z2, c)

)
+ u (z1, x1 − ω (z1))− u (z2, x1 − ω (z2)) .

If the utility function has a positive cross-partial derivative, then the first term is positive as z1 >

z2. Since the second term is also weakly positive, then u (z1, x2 − ω (z1)) > u (z2, x2 − ω (z2)).

In other words, widget maker 2 would rather pick a doctor of ability z1. This is a contradiction

and it must be that z1 < z2.
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A.2 Proofs for the baseline model

A.2.1 Solving equation (5)

We derive Equation (6). We look for a specific solution to Equation (5) of the type w (z) =

K1z
αz
αx . We find that K1 must satisfy

K1 = xmin
βαxλ

αz (1− β) + βαx

(
1

zc

)αz
αx

.

The solutions to the differential equation w′ (z) z + β
1−βw (z) = 0 are given by Kz−

β
1−β for any

constant K. We get that all solutions to (5) take the form:

w (z) =
xminβαxλ

αz (1− β) + βαx

(
z

zc

)αz
αx

+Kz−
β

1−β .

We then obtain (6) by using that w (zc) = xmin which fixes

K = xminz
β

1−β
c

αz (1− β) + βαx (1− λ)

αz (1− β) + βαx
.

A.2.2 Proof of Proposition 2

Combining (4) and (6), we can derive spending on health care as

h (x) =
βαx

αz (1− β) + βαx
x+ xmin

αz (1− β) + βαx (1− λ)

λ (αz (1− β) + βαx)

(xmin

x

) αxβ
αz(1−β)

. (18)

Combining (18) with (1) and (4), we get that the utility of a widget maker with income x is

given by

u (x) =

(
αz (1− β)x

αz (1− β) + βαx
− (αz (1− β) + βαx (1− λ))xmin

λ (αz (1− β) + βαx)

(xmin

x

)αx
αz

β
1−β

)1−β

zβc

(
x

xmin

)βαx
αz

.

Therefore eq (x) obeys

eq (x) =

(
αz (1− β)x

αz (1− β) + βαx
− (αz (1− β) + βαx (1− λ))xmin

λ (αz (1− β) + βαx)

(xmin

x

)αx
αz

β
1−β

)(
zc
zr

x

xmin

) αxβ
αz(1−β)

,

which implies that for x large enough:

eq (x) ≈
(
zc
zr

) αxβ
αz(1−β) αz (1− β)x

−αx
αz

β
1−β

min

αz (1− β) + βαx
x1+

αx
αz

β
1−β .
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Then the distribution of real income, EQ, obeys Pr (EQ > e) = Pr (X > eq−1 (e)), so that for

e large enough, we obtain:

Pr (EQ > e) ≈
(
zc
zr

) αx

1+αz
αx

1−β
β

(
xminαz (1− β)

αz (1− β) + βαx

1

e

) αx

1+αx
αz

β
1−β .

Therefore asymptotically, real income is Pareto distributed with a shape parameter αeq ≡
αx

1+αx
αz

β
1−β

. Moreover we obtain: d lnαeq

d lnαx
= 1

1+αx
αz

β
1−β

.

A.3 Occupational Mobility

In this appendix, we analyze the model briefly described in Section 3.2.1. Individual abilities

as doctors and widget-makers are positively (in fact perfectly) correlated so that there can be

occupational mobility along the entire ability distribution. Formally, we keep a similar set-up

as in the baseline model but we assume that there is a mass 1 of agents who decide whether

to be doctors or widget makers. We rank agents in descending order of ability and use i to

denote their rank. For two agents i and i′ with i < i′, i will be better both as a widget maker

and as a doctor than i′. Both ability distributions are Pareto with parameters (xmin, αx) for

widget maker and (zmin, αz) for doctors. An agent i can choose between becoming a widget

maker earning x (i) or being a doctor providing health services of quality z (i) and earning

w (z (i)). Those working as doctors also need the services of doctors. We assume that λ > 1 to

ensure that everyone can get health services. By definition of the rank we have that the counter

cumulative distribution functions for x and z obey Gx (x (i)) = Gz (z (i)) = i.

Assume that below a certain rank, some individuals choose to be widget makers and some

doctors. This holds in equilibrium under a condition specified below. Then, individuals must

be indifferent between the two occupations, so that for i low enough, we have w (z (i)) = x (i).

Therefore the wage function must satisfy w (z) = G
−1

x

(
Gz (z)

)
for z high enough. As both

ability distributions are Pareto, we get:

w (z) = xmin (z/zmin)
αz/αx . (19)

Doctor wages grow in proportion to what they could earn as a widget maker.

Let µ (z) ∈ [0, 1] denote the share of individuals with medical ability z who choose to be

doctors. Market clearing in medical services implies that:

(xmin/m (z))αx =

∫ ∞

z

λµ (ζ) gz (ζ) dζ, (20)

where m (z) denotes the income of the patient of a doctor of quality z.

The first order condition on health care consumption (2) still applies. For z sufficiently high,
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µ is interior, and (19) holds, combining these expressions with (20), we obtain:∫ ∞

z

µ (ζ)αzζ
−αz−1dζ = λαx−1z−αz

(
αz
αx

+
β

1− β

)−αx

.

Differentiating with respect to z, we find that µ is a constant: µ = λαx−1
(
αz

αx
+ β

1−β

)−αx

.

Intuitively, with a constant µ, doctors’ wages grow proportionately with patients’ incomes, in

line with the Cobb-Douglas assumption. To be consistent with our assumption of an interior

equilibrium, we must have λαx−1
(
αz

αx

1−β
β

+ 1
)−αx

< 1.44

With a constant share of individuals choosing to be doctors (above a threshold), we get that

Pdoc (Wd > wd) = P (Z > w−1 (wd)) for wd high enough so that the observed distribution for

doctor wages is Pareto with a shape parameter αx. Therefore, Proposition 1 still applies:45

Proposition 5. Assume that λαx−1
(
αz

αx

1−β
β

+ 1
)−αx

< 1, then doctors’ income is Pareto dis-

tributed above a threshold with the same shape parameter as for widget makers. Therefore, an

increase in top income inequality for widget makers increases top income inequality for doctors.

Therefore the models with and without occupational mobility are observationally equivalent

for top income inequality: doctors’ top income inequality perfectly traces that of widget makers.

Finally, note that with occupational mobility, doctors and widget makers interact through two

channels: a demand side and an outside option side. Appendix D.2 in the Supplementary

Material available at http://www.gottlieb.ca presents an additional model that separates

the two. It highlights that the demand effect drives the result.

A.4 Doctors moving: Proof of Proposition 3

With no trade in goods between the two regions, we can normalize the price of the homogeneous

good to 1 in both. As doctors only consume the homogeneous good, doctors’ nominal wages

must be equalized in the two regions. As a result the price of health care of quality z must

be the same in both regions. From the first order condition on health care consumption, the

matching function is also the same: doctors of quality z provide health care to widget makers of

income m (z) in both regions. Moreover, the least able potential doctor who decides to become

a doctor must have the same ability zc in both regions.46

44If λαx−1
(

αz

αx

1−β
β + 1

)−αx

> 1, then all individuals above a certain ability threshold choose to be doctors

while all those below it choose to be widget makers. This is counterfactual.
45If the distributions of x and z are only asymptotically Pareto, then Proposition 1 applies asymptotically.
46Here, potential doctors who decide to work in the homogeneous good sector would go to region B since

αA
x > αB

x implies that xA
min < xB

min. This is without consequences: alternatively, we could have assumed that
the outside option of doctors is to produce x̂, which is identical between the two regions. In that case potential
doctors who work in the homogeneous sector would not move.
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We define by φ (z) the net share of doctors initially in region B with ability at least z who

decide to move to region A. Labor market clearing in A implies that, for z ≥ zc,(
xAmin/m (z)

)αA
x = λµd (1 + φ (z)) (zmin/z)

αz . (21)

There are initially µd
(
zmin

z

)αz
doctors with ability at least z in each region and by definition,

a share φ (z) of those move from region B to region A. Since each doctor can provide services

to λ patients, after doctors have relocated the total supply over a quality z in region A is given

by the right-hand side of (21). Total demand corresponds to region A patients with an income

higher than m(z), of which there are P (X > m (z)). The same equation, replacing φ(z) by

−φ(z), holds in region B:

(
xBmin/m (z)

)αB
x = λµd (1− φ (z)) (zmin/z)

αz . (22)

Since the two regions are of equal size, total demand for health services must be the same

and on net, no doctors move: φ (zc) = 0. Summing up the market clearing equations (21) and

(22) for z = zc, we obtain zc = (λµd)
1
αz zmin, as in the baseline model.

Similarly, combining (21) and (22) for any z, we obtain

xAmin (1 + φ (z))
− 1

αA
x = xBmin

(
z

zc

) αz
αB
x
− αz

αA
x

(1− φ (z))
− 1

αB
x . (23)

Since αBx > αAx , we find that
(
z
zc

) αz
αB
x
− αz

αA
x tends towards 0. As a net share φ (z) ∈ (−1, 1). If

φ (z) → −1, the left-hand side tends toward infinity and the right-hand side toward 0, which is

a contradiction. Therefore 1 + φ (z) must be bounded below, which ensures that the left-hand

side is bounded above 0. If φ (z) ̸→ 1, then the right-hand side tends toward 0, which is also

a contradiction. Therefore asymptotically, we must have that φ (z) → 1: nearly all the best

doctors move to the most unequal region.

Plugging (21) in (2), we get that in region A:

w′ (z) z +
β

1− β
w (z) =

βλ

1− β
(1 + φ (z))

− 1

αA
x

(zc
z

)− αz
αA
x .

Therefore, asymptotically:

w (z) → λβαAx 2
− 1

αA
x

αz (1− β) + βαAx

(
z

zc

) αz
αA
x

(24)

As φ (z) → 1, doctors’ talent is asymptotically distributed with Pareto coefficient αz in region

A after the location decision. For z high enough, there are 2µd
(
zmin

z

)αz
doctors eventually

49



located in region A. Then, as in the baseline model, doctors’ income is asymptotically Pareto

distributed with coefficient αAx in A. Further, using (23), we get:

1− φ (z) → 2α
B
x /α

A
x
(
xBmin/x

A
min

)αB
x (z/zc)

αz(1−αB
x /α

A
x ) . (25)

Therefore, the ex post talent distribution of doctors in region B is still Pareto but now with a

coefficient α′
z = αz

αB
x

αA
x
. In region B, the probability that a doctor earns at least w̃ obeys:

PB
doc (W > w̃) =

µdP (Z > w−1 (w̃)) (1− φ (w−1 (w̃)))

µdP (Z > zc)
,

where w above denotes the wage function. Indeed, there are initially µdP (Z > w−1 (w̃)) doctors

in region B with a talent sufficient to earn w̃. A share of 1− φ (w−1 (w̃)) of these doctors stay

in B. Moreover, the total mass of active doctors in region B is given by µdP (Z > zc), since

overall there is no net movement of actual doctors. Using (24), we get:

w−1 (w̃) → zc

(
w̃
αz (1− β) + βαAx

λβαAx
2

1

αA
x

)αA
x

αz

.

Using this expression and (25) we get that:

PB
doc (W > w̃) =

(
zc

w−1 (w̃)

)αz (
1− φ

(
w−1 (w̃)

))
→
(
xBmin

xAmin

λβαAx
αz (1− β) + βαAx

1

w̃

)αB
x

.

Therefore, doctors’ income in region B is Pareto distributed with shape parameter αB as in the

baseline model. This establishes Proposition 3.

A.5 Generalizing the model to different utility functions and asymptotically

Pareto distributions

We now consider a generalized version of the model. There is a mass 1 of patients and a mass

µd of potential doctors. Potential doctors may consume medical services with the same utility

function as other agents (in which case the mass of widget makers is 1− µd) or not (the mass

of widget makers is 1). The technology for health services is the same as before and we keep

λ > µ−1
d . Agents not working as doctors produce a composite good which is the numeraire, and

potential doctors can work as widget makers with the lowest productivity xmin as an alternative.
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The income of patients is asymptotically Pareto distributed.47 Therefore, we get

Px (X > x) = Gx (x)Gx,x (x) ,

where Gx,x (x) is the conditional counter-cumulative distribution above x and Gx (x) is the

unconditional counter-cumulative distribution. For x large enough, we have

Gx (x, x) ≈ (x/x)αx with αx > 1.

The ability distribution of potential doctors is also asymptotically Pareto distributed.

We assume that the utility of patient features positive assortative matching (and put more

structure in the following subsections). As a result, the equilibrium still features assortative

matching and we still denote the matching function m (z). Market clearing at every z can still

be written as (3). The least able potential doctor who actually works as a doctor will have

ability zc = G
−1

z

(
1
λµd

)
, which is independent of αx. As a result, equation (3) implies that m (z)

is defined by m (z) = G
−1

x

(
Gz,zc (z)

)
.

For z above some threshold, z, both doctors’ talents and incomes are approximately Pareto

distributed, which allows us to rewrite the previous equation as:

Gx (m (z))

((
m (z)

m (z)

)αx

+ o

((
m (z)

m (z)

)αx
))

= Gz,zc (z)

((
z

z

)αz

+ o

((
z

z

)αz
))

which gives

m (z) = Bz
αz
αx + o

(
z

αz
αx

)
with B = m (z)

(
Gx (m (z))

Gz,zc (z) z
αz

) 1
αx

. (26)

A.5.1 Cobb-Douglas case

We now assume a Cobb-Douglas utility as in the baseline model. Solving for the patient problem

still leads to the differential equation (2). Plugging (26) in (2) gives:

w′ (z) z +
β

1− β
w (z) ≈ β

1− β
λBz

αz
αx .

Up to some constant, the problem is identical to the baseline for high z, so that Proposition 1

applies. Doctors’ income is asymptotically Pareto distributed with shape parameter αx.

47If potential doctors do not consume health care services, this is an assumption on an exogenous object,
the income distribution of widget makers. If potential doctors, do consume health care services, this is an
assumption on the equilibrium, which will be verified if the (exogenous) income distribution of widget makers
is asymptotically Pareto.
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Proof. We can rewrite (2) as

w′ (z) z =
βz

1− βz

(
λBz

αz
αx − w (z)

)
+ o

(
z

αz
αx

)
. (27)

We define w (z) ≡ βzαx

αz(1−βz)+βzαx
λBz

αz
αx which is a solution to the differential equation without

the negligible term, and w̃ (z) ≡ w (z)− w (z), which must satisfy

w̃′ (z) z = − βz
1− βz

w̃ (z) + o
(
z

αz
αx

)
.

This gives

w̃′ (z) z
βz

1−βz +
βz

1− βz
w̃ (z) z

βz
1−βz

−1 = o
(
z

αz
αx z

βz
1−βz

−1
)

Integrating we obtain:

w̃ (z) = Kz−
βz

1−βz + o
(
z

αz
αx

)
for some constant K, therefore w̃ (z) is negligible in front of w (z).

This ensures that

w (z) =
βαx

αz (1− β) + βαx
λBz

αz
αx + o

(
z

αz
αx

)
. (28)

From this we get that for wd large enough, doctors’ income is distributed according to

P (Wd > wd|wd > wd) ≈ (wd/wd)
αx . (29)

That is, doctors’ income follows a Pareto distribution with shape parameter αx. When potential

doctors consume medical services, this result is consistent with the initial assumption that

patients’ income is asymptotically Pareto distributed with shape parameter αx.

A.5.2 CES case and Proof of Proposition 4

We now assume that patients’ utility is CES (10) with ε ̸= 1. The first order condition for the

patient’s problem can be written as:

∂u

∂z
= ω′ (z)

∂u

∂c
. (30)

Using (10) and (4), and with w (z) = λω (z), we find that for high levels of z the wage function

obeys a differential equation given by

w′ (z) = λ
ε−1
ε
βz
βc
z−

1
ε

(
λBz

αz
αx − w (z)

) 1
ε
(1 + o(1)) . (31)
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The asymptotic distribution of doctors’ wages is given either by Proposition 4 or by the

following Proposition, which studies the remaining cases.

Proposition 6. 1) If either (i) ε > 1 and αx > αz, or (ii) ε < 1 and αx < αz, then doctors’

wages are asymptotically Pareto distributed with the same shape parameter as widget makers:

αw = αx. Further, asymptotically, widget makers spend all their income on health.

2) Assume that ε < 1. Then for αx >
αz

1−ε , doctors’ wages doctors are bounded. For αx =
αz

1−ε , doctors’ wages are asymptotically exponentially distributed. In both cases, the elasticity of

health expenditures with respect to income tend to 0, lnh(x)
lnx

→ 0.

In the first case, of Proposition 6, demand for health care services at the top is sufficiently

strong to generate a Pareto distribution of income for potential doctors. In the second case, it

is too weak to generate a Pareto distribution.

Proof. We now establish Propositions 4 and 6. Since consumption of the homogeneous good

must remain positive then limλBz
αz
αx − w (z) ≥ 0, which means that w (z) cannot grow faster

than z
αz
αx . We can then distinguish 2 cases: w (z) = o

(
z

αz
αx

)
and w (z) ∝ z

αz
αx .

Case with w (z) = o
(
z

αz
αx

)
. Then for z high enough, one obtains that

w′ (z) = λ
βz
βc
B

1
ε z(

αz
αx

−1) 1
ε + o

(
z(

αz
αx

−1) 1
ε

)
. (32)

Integrating, we obtain that for
(
αz

αx
− 1
)

1
ε
̸= −1

w (z) = K + λ
βz
βc

B
1
ε(

αz

αx
− 1
)

1
ε
+ 1

z(
αz
αx

−1) 1
ε
+1 + o

(
z(

αz
αx

−1) 1
ε
+1
)
,

where K is a constant. Note that to be consistent, we must have
(
αz

αx
− 1
)

1
ε
+ 1 < αz

αx
, that is

(αz − αx) (ε− 1) > 0: this case is ruled out if αz ≥ αx and ε < 1 or if αz ≤ αx and ε > 1.

If
(
αz

αx
− 1
)

1
ε
+ 1 < 0 then w (z) is bounded by K.

If
(
αz

αx
− 1
)

1
ε
+ 1 > 0, then we get that

w (z) = fw (z) = λ
βz
βc

B
1
ε(

αz

αx
− 1
)

1
ε
+ 1

z(
αz
αx

−1) 1
ε
+1 + o

(
z(

αz
αx

−1) 1
ε
+1
)
,

where the notation fw is introduced for clarity. Therefore one gets, for w large:

Pr (W > w) = Pr
(
Z > (fw)−1 (w)

)
= Gw (w)

(
w

w

) αz

(αz
αx

−1) 1
ε+1

+ o

(
w

− αz

(αz
αx

−1) 1
ε+1

)
,
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so that w is Pareto distributed asymptotically with a coefficient αw = αz

(αz
αx

−1) 1
ε
+1

, which is

increasing in αx (and we have αw > αx).

If
(
αz

αx
− 1
)

1
ε
+ 1 = 0, then αz = αx (1− ε), and integrating (32), one obtains

w (z) = fw (z) = λ
βz
βc
B

1
ε ln z + o (ln z) .

Therefore

Pr (W > w) = Pr

(
Z >

(
exp

(
βc

λβzB
1
ε

w

)
+ o (exp (w))

))
= Gz,zc (z) z

αz exp

(
− αzβc

λβzB
1
ε

w

)
+ o (exp (−αzw))

In that case, w is distributed exponentially.

Case where w (z) ∝ z
αz
αx . That is we assume that

w (z) = Az
αz
αx + o

(
z

αz
αx

)
(33)

for some constant A > 0. Then, we have that

Pr (W > w) = Pr

(
Z >

((w
A

)αx
αz

+ o (w)
αx
αz

))
= Gw (w)

(
w

w

)αx

+ o (w)
αx
αz

That is w is Pareto distributed with coefficient αx.

Plugging (33) in (31), we get:

A
αz
αx
z

αz
αx

−1 + o
(
z

αz
αx

−1
)
= λ

ε−1
ε
βz
βc

(λB − A)
1
ε z(

αz
αx

−1) 1
ε + o

(
(λB − A)

1
ε z(

αz
αx

−1) 1
ε

)
. (34)

First, if αz = αx, then we obtain A = λ
ε−1
ε

βz
βc

(λB − A)
1
ε .

Consider now that αz ̸= αx. If λB ̸= A then (34) is impossible when ε ̸= 1, therefore we

must have that λB = A. This equation then requires that

αz
αx

− 1 <

(
αz
αx

− 1

)
1

ε
⇔ (αz − αx) (ε− 1) < 0.

In fact, for (αz − αx) (ε− 1) < 0, one gets that

w (z) = λBz
αz
αx − λ

(
B
αz
αx

βc
βz

)ε
zε(

αz
αx

−1)+1 + o
(
zε(

αz
αx

−1)+1
)

satisfies (31) provided that the function o
(
zε(

αz
αx

−1)+1
)
solves the appropriate differential equa-
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tion.

Collecting the different cases together gives Propositions 4 and 6. In addition, since the

income distribution of doctors never has a fatter tail than a Pareto with shape parameter αx,

the results are always consistent with patients’ income being Pareto distributed with shape

parameter αx for the case where potential doctors consume medical services.

A.5.3 Homothetic utility function

We now consider a general homothetic utility function u. In that case, the ratio of marginal util-

ities ∂u
∂z
/∂u
∂c

only depends on the ratio c/z. Using patient’s budget constraint and the matching

function (26), we can then write (30) as

w′ (z) = λ
∂u
∂z
∂u
∂c

≡ λf

(
Bz

αz
αx

−1 − w (z)

zλ

)
. (35)

We assume that the utility function admits positive and finite limits to its elasticity of substi-

tution when z/c goes to either 0 or infinity. That is:

lim
z/c→∞

−
d ln

(
∂u
∂z
/∂u
∂c

)
d ln (z/c)

=
1

ε∞
and lim

z/c→0
−
d ln

(
∂u
∂z
/∂u
∂c

)
d ln (z/c)

=
1

ε0
,

where εk ∈ (0,∞) for k ∈ {0,∞}. Then, we can write that for z/c arbitrarily large (k = ∞) or

small (k = 0):

ln

(
∂u
∂z
∂u
∂c

)
=

(
1

εk
ln

(
λBz

αz
αx

−1 − w (z)

z

)
+ ln β

)
(1 + o (1)) ,

where β is a constant. In these two cases, we can then rewrite (35) as:

w′ (z) = λ
εk−1

εk β

(
λBz

αz
αx

−1 − w (z)

z

) 1
εk

(1 + o (1)) , (36)

which is the same expression as (31) in the CES case (except that there are two potential values

for εk). We then obtain

Proposition 7. Propositions 4 and 6 apply to any homothetic utility function which admit posi-

tive and finite local elasticities of substitutions as the ratio z/c tend to 0 or infinity. The relevant

elasticity is ε0 when αz > αx and ε∞ when αz < αx (Proposition 1 applies when εk = 1).

Proof. If αz < αx, then z/c → ∞, regardless of w (z), and it is immediate that the logic of

Propositions 4 and 6 apply with ε∞ (and Proposition 1 applies if ε∞ = 1).
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Consider now the case αz > αx. To establish the result, we need to check that z/c → 0

(that is c/z = λBz
αz
αx

−1 − w (z) /z → ∞) in all cases. If ε0 = 1, wages are Pareto dis-

tributed and health expenditures are an interior share of total income, which ensures that

λBz
αz
αx

−1 − w (z) /z → ∞ (so Proposition 1 applies). If ε0 > 1, then, following Propo-

sition 4, health expenditures become a negligible share of total income, which ensures that

λBz
αz
αx

−1 − w (z) /z → ∞. If ε0 < 1, then, following Proposition 6, health expenditures are

asymptotically equal to total income. Therefore, we must have w (z) = λBz
αz
αx − g (z), where

g (z) is negligible compared with z
αz
αx . Plugging this expression in (36) gives:

αz
αx
λBz

αz
αx

−1 − g′ (z) = λ
ε−1
ε β

(
g (z)

z

) 1
ε

(1 + o (1)) .

Assume that g (z) /z is bounded, then we would get that g′ (z) → αz

αx
λBz

αz
αx

−1, but this contra-

dicts the assumption that g (z) is negligible in front of z
αz
αx . Therefore, g (z) /z is unbounded,

so that λBz
αz
αx

−1 − w (z) /z → ∞ in that case as well.

A.6 Generalized ability distribution

We consider the set-up of the baseline model with a Cobb-Douglas utility function but generalize

the ability distribution to any unbounded distribution with a counter-CDF denoted Gz. (We

keep the widget makers’ income distribution Pareto but this could be generalized as well.) We

assume that lim
z→∞

zgz(z)

Gz
exists. If this limit is positive and finite then the ability distribution is

asymptotically Pareto (with a shape parameter equal to that limit) and this case is treated in

Appendix A.5.1. We focus here on the case where the limit is either 0 or infinite. As before,

there is a cut-off value zc above which all potential doctors choose to be doctors. We then define

G̃ (z) = Gz (z) /Gz (zc) = λµdGz (z), which is the counter-cumulative ability distributions of

individuals who actually choose to be doctors (and g̃ is the corresponding conditional PDF).

We have lim zg̃(z)

G̃
= lim zgz(z)

Gz
. Equation (4) is then replaced by m (z) = xmin

(
G̃ (z)

)− 1
αx
, which

allows to derive the differential equation for the wage function as:

w′ (z) z =
βz

1− βz

(
λxmin

(
G̃ (z)

)− 1
αx − w (z)

)
. (37)

instead of (5). We then establish the following Proposition which generalizes Proposition 1:

Proposition 8. If the ability distribution has a tail at least as fat as Pareto ( lim
z→∞

zgz(z)

Gz
exists

and is finite), doctors’ income is asymptotically Pareto distributed with shape parameter αx. If

the ability distribution has a tail thinner than Pareto ( lim
z→∞

zgz(z)

Gz
= ∞), doctors’ income is not

asymptotically Pareto distributed but ln(P (W>w))
lnw

decreases with αx for w large enough.
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For a Pareto distribution, ln(P (W>w))
lnw

= −αw. Therefore the statement that ln(P (W>w))
lnw

decreases with αx for high w directly generalizes the notion that top income inequality spills

over from the general distribution to the doctors’ income distribution to the case where the

ability distribution has a tail thinner than Pareto.

Proof. We consider in turn two cases: either w (z) → Aλxmin

(
G̃ (z)

)− 1
αx

for some constant

A ∈ (0, 1] or w (z) is dominated by λxmin

(
G̃ (z)

)− 1
αx
.

Case 1: w (z) → Aλxmin

(
G̃ (z)

)− 1
αx
. In that case,

P (W > w) → G̃

(
G̃−1

(
w

Aλxmin

)−αx
)

=

(
w

Aλxmin

)−αx

.

so that the income distribution of doctors is Pareto distributed with shape parameter αx. We

can write w (z) = A (z)λxmin

(
G̃ (z)

)− 1
αx

where A (z) tends toward a positive constant so that

in the limit A′ (z) = 0. Plugging this in (37), one gets:

A′ (z) z +
1

αx

zg̃ (z)

G̃ (z)
A (z) =

βz (1− A (z))

1− βz
. (38)

Since A (z) tends toward a constant, we must have limA′ (z) z = 0 (if A′ (z) z were bounded

below above 0, then A(z) would grow faster than the log function). When lim zg̃(z)

G̃(z)
is positive

and finite, we recover the asymptotic Pareto case that we have already studied. If lim zg̃(z)

G̃(z)
= 0,

then we must have that A (z) → 1. This consistent with equation (38) since both the right-

hand and left-hand sides tend toward 0. In contrast, if lim zg̃(z)

G̃(z)
= ∞, the left-hand side is

unbounded and the right-hand side is bounded which yields a contradiction: so that w(z) must

be dominated by
(
G̃ (z)

)− 1
αx

in that case.

Case 2: w (z) = o

(
λxmin

(
G̃ (z)

)− 1
αx

)
. Then, (37) leads to

w′ (z) =
βz

1− βz
λxmin

1

z

(
G̃ (z)

)− 1
αx

(1 + o (1)) . (39)

If lim zgz(z)

Gz(z)
= 0, then for any K > 0, we have that G̃ (z) > Kzg̃ (z) for z high enough.

Then, for z high enough,

w′ (z) > K
βz

1− βz
λxminzg̃ (z)

(
G̃ (z)

)− 1
αx

−1

.
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This directly implies that w (z) > K
(
G̃ (z)

)− 1
αx
for any K, which is a contradiction. Since we

have also ruled out lim zgz(z)

Gz(z)
positive and finite, then we must have that lim zgz(z)

Gz(z)
= ∞. In

return, with the derivative of
(
G̃ (z)

)− 1
αx

being zg̃ (z)
(
G̃ (z)

)− 1
αx

−1

, we necessarily get that

the derivative of
(
G̃ (z)

)− 1
αx

is larger than that of w (z) when lim zgz(z)

Gz(z)
= ∞, which justifies

the assumption that w (z) = o

(
λxmin

(
G̃ (z)

)− 1
αx

)
.

Integrating (39), we can write

w (z) = w (zM) +
βz (1 + o (1))

1− βz
λxmin (Fαx (z)− Fαx (zM)) .

for some zM , where Fαx (z) is a primitive of 1
z

(
G̃ (z)

)− 1
αx
. As G̃ (z) has a thinner tail than

Pareto, we get in particular that G̃ (z) ≤ z−2αx , so that 1
z

(
G̃ (z)

)− 1
αx
> z. As a result Fαx (z)

and w (z) go to infinity. We can then rewrite:

w (z) =
βz (1 + o (1))

1− βz
λxminFαx (z) ,

so that for large w, z (w) ≈ F−1
αx

(
w 1−βz
βzλxmin

)
. We then get

P (W > w) = G̃ (z (w)) ≈ G̃

(
F−1
αx

(
w

1− βz
βzλxmin

))
.

By definition, we can rewrite

w
1− βz
βzλxmin

=

∫ F−1
αx

(
w 1−βz

βzλxmin

)
zM

1

ζ

(
G̃ (ζ)

)− 1
αx
dζ.

Differentiating with respect to αx, one gets:

∂F−1
αx

(w)

∂αx

1

F−1
αx

(w)

(
G̃
(
F−1
αx

(w)
))− 1

αx
=

∫ F−1
αx (w)

zM

1

αx

1

ζ

(
G̃ (ζ)

)− 1
αx

−1

dζ.

Therefore Fαx is increasing in αx. As G̃ is decreasing, P (W > w) is decreasing in αx.

A.7 Scalability in health care

We start from the baseline model of Section 3.1 except that doctors can now choose how many

patients to treat. Specifically, doctors pay effort costs k1λ
k2/k2 where λ is the number of patients
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treated and k2 > 1 with k1 > 0 (results are identical if doctors pay monetary costs). Doctors’

utility maximization problem immediately implies that their scale depends on the income they

receive for their services as

λ (z) = (ω (z) /k1)
εS where εS ≡ 1/ (k2 − 1) . (40)

εS is the supply elasticity of health services. Widget makers’ consumption problem remains the

same, so there is still positive assortative matching and equation (2) holds. Health care market

clearing now takes into account that doctors serve different number of patients. With Pareto

distributions for doctors’ ability and widget makers’ income, we get:

(mz/xmin)
−αx =

∫ ∞

z

λ (ζ)αz
1

ζ
(ζ/zc)

−αz dζ, (41)

with zc the least able doctor. The equilibrium is defined by (2), (40) and (41) and we get:

Proposition 9. Doctors’ income is asymptotically Pareto distributed with shape parameter αw =
αx+εS

1+εS
, and an increase in income inequality for widget makers leads to an increase in income

inequality for doctors.

Proposition 9 implies that the central spillover result from Proposition 1 generalizes to

this setup. The elasticity of doctors’ income inequality with respect to widget makers’ income

inequality is
(
1 + εS

αx

)−1

. This expression decreases with the supply elasticity of health services,

and in the limit when εS = 0 (i.e. health care services are not scalable), we recover the exact

result of Proposition 1. Intuitively, more elastic supply from each doctor leads to increased

supply of healthcare quality, especially at the top. This reduces the pass-through from widget

makers’ inequality into price inequality and thus into doctors’ income inequality—despite the

increase in supply at the top.

Proof. Combining (2), (40) and (41), we obtain the differential equation:

ω′ (z) z +
β

1− β
ω (z) =

β

1− β
xmin

(∫ ∞

z

(
ω (ζ)

k1

)εS
αz

1

ζ

(
ζ

zc

)−αz

dζ

)− 1
αx

. (42)

We verify that a solution to the problem of the form ω (z) = C1z
ψ exists. Plugging this

expression in (42), we obtain a solution with ψ = αz

αx+εS
and some constant C1. In fact, the

solution must asymptotically behave like C1z
ψ, otherwise the left-hand and right-hand sides of

(42) cannot be of the same order. Doctors’ income can then be written as

w (z) = λ (z)ω (z) → C2z
αz(1+εS)

αx+εS ,
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where C2 is another constant. Therefore for w, large enough, we obtain:

Pr (W > w) ≈ Pr

(
Z > (w/C2)

αx+εS

αz(1+εS)

)
≈ zαz

c (w/C2)
−αx+εS

1+εS .

Doctors’ incomes are asymptotically Pareto distributed with shape parameter αw = αx+εS

1+εS
, so

∂ lnαw

∂ lnαx
=
(
1 + εS

αx

)−1

.

A.8 Partly tradable health care

Consider the set-up of section 3.2.4. Without loss of generality, assume that region 1 is the

most unequal; that is α1
x = mins {αsx}. Again without loss of generality, assume that αsx > α1

x

for s ̸= 1. Denote by κs (x) the share of widget makers of ability x who are mobile in region s.

We assume that limx→∞ κ1 (x) = κ > 0; that is, a positive mass of patients travel in the richest

region. In all regions s ̸= 1, for x large enough, the set of potential patients with income above

x will be dominated by traveling patients from region 1. Since the equilibrium still features

positive assortative matching, for all doctors with z high enough in all regions, most doctors

will be matched with a patient from region 1 . The analysis of the baseline model (specifically

Section A.5.1) applies and doctors’ income in each location is asymptotically Pareto distributed

with shape parameter α1
x.

B Data appendix

B.1 Details of data construction and Figure 1

Sample Selection We restrict the sample of Census/ACS respondents to those who are age

25 or older. We further restrict the sample to individuals that either (1) have positive income

and are categorized as “employed, at work” according to the variable ESR (employment status

recoded) or (2) have positive income, are not in the labour force, and are age 65 or older.

The latter group approximates retirees. For the positive income restriction, income refers to

whichever definition is being used – typically wage income, but in robustness checks we also

use all earned income.

Construction of Figure 1 For both 1980 and 2012 we calculate two sets of statistics. First,

the percentiles of average occupational log wage income where occupations are weighted by

occupation size. Then within each of these percentile groups, we rank individual observations

based on income and calculate 500 bins of the distribution of the difference between average

log earnings in that bin and the corresponding occupation-percentile. The green series (with

circles) shows the actual change from 1980 to 2012. The “Between-Occupation Effects Only”
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series (with red triangles) shows the counterfactual distribution if occupational percentiles’

wage incomes had changed to 2012 levels, but the corresponding bins of differences around

each percentile (500 for each of the 100 percentiles) had remained unchanged. The “Within-

Occupation Effects Only” series (with blue squares) shows the counterfactual distribution if the

occupational percentiles’ wage incomes had remained constant at the 1980 level, but the bins

around each percentile had changed to 2012 levels.

Weighing All constructed variables use individual census weights (perwt).

Independent Variable Construction in the Regression Analysis For a given percentile cutoff

that defines the upper tail of the income distribution, such as the 90th percentile, and a given

outcome occupation of interest, such as doctors, we do the following:

1. Among uncensored observations, calculate the income at that percentile in that region-

year among all persons regardless of occupation. Drop all observations below that income

level.

2. Then, drop the occupation of interest, that is, the occupation in the dependent variable.

3. Then, calculate the inverse Pareto parameter as described in the main text, correcting

for censoring.

We adjust Equation 13 to account for the presence of a few censored observations in the

data. Consider a sample of draws of a random variable X̃ which follows a Pareto distribution

P (X̃ > x̃) = (x̃/xmin)
−α. Due to censoring, the observed value is x = min{x̃, x̄} for some

(known) censoring point, x̄ > xmin. We denote Ncen the number of censored observations,

Nunc the number of uncensored observations, and Nunc the set of uncensored observations.

The maximum likelihood estimator is 1
α̂
= 1

Nunc

[∑
i∈Nunc

ln
(

xi
xmin

)
+Ncen ln

(
x̄

xmin

)]
. This is

our measure of income inequality throughout. Armour, Burkhauser, and Larrimore (2016) use

this method with Current Population Survey data (March supplement) to show that trends in

income inequality match those found by Kopczuk, Saez, and Song (2010) using Social Security

data.

Dependent Variable Construction in the Regression Analysis For a given percentile cutoff

that defines the upper tail of the income distribution, such as the 90th percentile, and a given

outcome occupation of interest, such as doctors, we do the following:

1. Among uncensored observations, calculate the income at that percentile in that region-

year among all people regardless of occupation. Drop all observations with income below that

income level.

2. Then, keep only observations from the outcome occupation of interest (i.e., doctors).

3. Then, calculate the inverse Pareto parameter correcting for censoring.

Instrument Construction in the Regression Analysis To construct the inequality measures

entering the shift-share instrument, we first calculate the income at the percentile cutoff defin-
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ing the upper tail (e.g., 90th) among uncensored observations nationwide. Observations with

income below that level are dropped. Then, for each region s, we drop respondents residing in

that region and calculate the nationwide inverse Pareto parameter separately for each occupa-

tion. To calculate the weights (or shares) in the Bartik, for each region s, we identify the 20

most common occupations in the upper tail of that region in 1980, where upper tail is defined in

the same way as described above. For each of the top 20 occupations, we calculate the fraction

of the upper tail population that is employed in each occupation in 1980. These population

shares are the weights in the Bartik, as described in the main text. When we estimate the

log-log form of our regressions, these weights (among the top 20 occupations) are normalized

to sum to 1 by dividing each by their collective sum. When the regressions are estimated in

level-level form, the weights are not normalized, and thus sum to less than one. Retirees are

excluded from the instrument.

Minimum required number of observations The asymptotic variance of our maximum likeli-

hood estimate of α̂ is α2/N , which is decreasing in N such that few observations imply a higher

estimated variance. In addition, the variance estimate suffers from small-sample bias. A ratio

of the standard error to the estimate of the maximum likelihood estimator, σ̂/α̂, of less than

20 percent would require 25 observations. Monte Carlo simulations also show that the average

absolute deviation of the estimated variance with a bootstrapped estimate exceeds 20 percent

when the number of observations is less than around 25 (results not shown). These two results

guide our choice of 25 as the cutoff but we perform robustness checks for other values.

Regressions 1. Weight: Regressions are weighed by the number of observations in the outcome
occupation above the cutoff in that region-year.

2. Sample: Only LMAs that have at least 25 outcome occupation observations above the

cutoff in all years are included so that the regression sample is balanced.

3. We estimate the regressions with the Stata add-on commands reghdfe and ivreghdfe.

4. Standard errors are clustered at the LMA level.

B.2 Crosswalks

Occupations We use the occupation classification constructed by Deming (2017) which ensures

consistent occupational groups throughout our sample. We create some additional groupings:

We combine all engineering occupations into one, all managers (excluding those working in real

estate) into one, and combine primary and secondary school teachers together.

Geography: Labor Market Areas We compute local inequality within LMAs defined by Tol-

bert and Sizer (1996). These are aggregates of the 741 Commuting Zones (CZs) popularized

by Dorn (2009). Both commuting zones and LMAs are defined based on the commuting pat-

terns between counties. CZs are unrestricted in size, whereas LMAs aggregate CZs to ensure
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a population of at least 100,000. LMAs are constructed such that they can be driven through

in a matter of a few hours, e.g., Los Angeles or New York. Given that our estimation strategy

relies on a relatively high number of observations of a particular occupation, LMAs are a more

natural choice.

B.3 Occupational Characteristics

B.3.1 O*NET

We use the Occupational Information Network (O*NET) 10.0 June 2006 release of occupation

characteristics, drawing on two traits in particular: “Customer and Personal Service” from the

list of “Knowledge” traits, and “Performing for or Working Directly with the Public” from the

list of “Work Activities”. Each trait is scored on a scale from 0 to 7 based on the “level” of

skill in that trait required for the occupation. We crosswalk from O*NET-SOC codes to 2000

census occupation groups (occ2000) using the SOC-to-occ2000 weights used by Acemoglu and

Autor (2011) (available at https://economics.mit.edu/people/faculty/david-h-autor/

data-archive). We then collapse from occ2000 to the occupation definition used in this paper

(developed by David Deming (2017), which we call occ1990dd) as described in the main text.

For this collapse, we take the weighted average of each O*NET trait at the occ1990dd level,

where the weights correspond to the fraction of each occ1990dd population derived from each

occ2000 category. We calculate these weights using the 2000 public-use Census sample. Finally,

once we have O*NET traits at the occ1990dd level, we normalize the traits to be in percentile

rankings (from 0 to 1) rather than on the 0 to 7 scale. Each occupation is assigned their

percentile ranking in the occupation distribution of the trait (weighted by occupation size).

These two normalized traits are the bases of Figure 5.

B.3.2 Blinder

We rely on the measure of offshorability in Blinder (2009) to act as an (inverse) measure of

the extent to which an occupation serves the local market. Based on O*NET characteristics

for each occupation (using the 2006 version), he manually assigns an ordinal score between 0

and 100 for 817 occupations, with 100 being completely offshorable, and anything less than 25

being completely non-offshorable. In most instances, the O*NET occupation codes correspond

one-for-one with the Standard Occupation Classification (SOC) from the U.S. Department of

Labor. In his appendix, he lists the SOC occupations scored as greater than 25 (at least par-

tially offshorable). When two or more O*NET occupation codes correspond to a single SOC

code, and those ONET occupations are deemed to be substantially different in their offshora-

bility, he keeps the ONET occupation codes separate, as opposed to aggregating them to the
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Table B.1: Ratio of 98th to 90th percentile of wage income for selected occupations

98th to 90th percentile ratio
Occupation 1980 2012 Change

Aerospace engineers 1.37 1.46 0.09
Chief executives and public administrators 1.63 2.42 0.80
Dentists 1.54 1.74 0.20
Financial managers 1.62 2.38 0.75
Financial service sales occupations 1.79 2.81 1.02
Lawyers 1.89 2.31 0.42
Managers and administrators, n.e.c. 1.90 1.80 -0.11
Physicians 1.50 1.72 0.23
Primary school teachers 1.26 1.33 0.07
Real estate sales occupations 1.94 2.17 0.23
Registered nurses 1.29 1.48 0.20
All occupations combined 1.70 1.99 0.29

Notes: The ratio of wage income at 98th percentile of the income distribution
to wage income at the 90th percentile, for selected occupations. The sample
consists of employed workers with positive wage income. Source: Authors’
calculations using Decennial Census and ACS data

SOC code level. In the few cases in which that occurs, he only reports the ONET occupation

codes scored as greater than 25. For example, Financial Managers are a single category in SOC,

but are split into three categories in the ONET classification: 11-3031.00 Financial Managers,

11-3031.01 Treasurers and Controllers, and 11-3031.02, Financial Managers, Branch or Depart-

ment. Blinder only reports the one sub-type of financial manager that he considers partially

offshorable (offshorability index of 75), and does not list which of the three O*NET sub-types

it represents, just the higher-level SOC code.

Sixteen of our 28 occupations are not offshorable (score less than 25). We map this to the

IV spillovers in two ways. First, we rescale the score for our 28 occupations (including a 0 for

those that are not offshorable) to be in percentile rankings, where each occupation is assigned

their percentile ranking in the occupation distribution of offshorability (weighted by occupation

size). This measure underlies Panel 5a. Second, we group occupations into those deemed non-

offshorable and those that are offshorable to some extent. These two groups have statistically

distinct average spillover estimates as discussed in footnote 42.

C Empirical Appendix

C.1 Additional tables of descriptive statistics

Table B.1 shows the 98th to 90th percentile for selected occupations in 1980 and 2012 – including

physicians, dentists and real estate agents, as well as for all for the overall population. Table

C.1 gives descriptive statistics for the largest occupations in the top of the income distribution

for the year 2000.
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Table C.1: Descriptive Statistics for Top Occupations in 2000. Wage Income

Mean income Occupations share in:
Occupation $1000 top 10% top 5% top 1%

Managers excl. real estate 61 0.23 0.24 0.18
Chief executives and general
administrators, public administration 120 0.06 0.09 0.15
Engineers 63 0.05 0.04 0.01
Computer systems analysts and scientists 57 0.05 0.04 0.02
Lawyers and judges 98 0.04 0.05 0.07
Physicians 136 0.04 0.07 0.13
Sales workers, other commodities 53 0.04 0.04 0.03
Supervisors and proprietors, sales occupations 45 0.04 0.04 0.04
Financial managers 68 0.03 0.03 0.03
Other financial officers 61 0.02 0.02 0.03
Accountants and auditors 47 0.02 0.02 0.02
Postsecondary teachers 43 0.02 0.01 0.00
Securities and financial services sales occupations 102 0.01 0.02 0.04
Computer programmers 57 0.01 0.01 0.00
Real estate sales occupations 53 0.01 0.01 0.02
Supervisors, production occupations 43 0.01 0.01 0.01
Registered nurses 40 0.01 0.01 0.00
Supervisors, general office 37 0.01 0.01 0.01
Teachers, elm., prim., second. 35 0.01 0.00 0.00
Sales workers 29 0.01 0.02 0.01

Notes: This table shows basic descriptive statistics for the top twenty occupations in the top ten percent
of the national income distribution in 2000. Column 1 reports mean income from wage (for the whole
population), where (the very few) censored values have been replaced with the state-level mean income
among those above the censoring point. The final three columns show the occupation’s share of all
earners in the top ten, five, and one percent of the income distribution. Source: Authors’ calculations
using Decennial Census.

C.2 Additional empirical results

We next show the results discussed in Section 6.2. In Table C.2, we first replace the left hand

side with earned income as the sum of wage and business income. Column (1) shows the OLS

regression and Column (2) the IV. Alternatively, we control for the specialties of physicians.

Columns (3) and (4) report OLS and IV coefficients, respectively.

Table C.3 considers a linear specification for physicians, dentists and real estate agents,

respectively. Coefficients show little change. The coefficient on the IV regression for physicians

differs from zero with p = 0.105.

Table C.5 shows regressions for physicians wherein we exclude, one at a time, the occupations

with the highest Rotemberg weights from the instrument. The Rotemberg weights are computed

for a linear specification which includes a constant set of occupations. For each LMA in 1980,

we find the top 12 occupations in that LMA in the upper tail. We then build our Bartik

instrument with the union of those top 12 across all LMAs in the regression sample. The

weights are reported in Table C.4.

Table C.6 changes cutoffs in three dimensions. Column (1) gives the result where we only

rely on the top 5 percent of the local population when calculating our inverse Pareto parameter

(instead of 10 percent). Columns (2) and (3) uses LMAs with at least 40 or 15 observations,

respectively. In our baseline regressions we use 25. Columns (4) and (5) change the number of
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Table C.2: Robustness Checks for Physicians

Earned income Specialities

OLS IV OLS IV
(1) (2) (3) (4)

ln(α−1
−o) 0.09 1.57∗∗ 0.17∗∗ 1.12∗∗

(0.08) (0.76) (0.07) (0.55)
ln(Average Income) −0.43∗∗∗ −0.67∗∗∗ −0.42∗∗∗ −0.57∗∗∗

(0.10) (0.15) (0.08) (0.11)
ln(Population) 0.01 0.11 −0.01 0.05

(0.03) (0.08) (0.02) (0.05)
Sh. neurosurgeons 3.53 2.60

(2.47) (3.00)
Sh. higher earning specialties 2.28∗∗∗ 2.17∗∗

(0.77) (0.95)
Sh. lower earning specialties −0.80∗∗∗ −0.38∗∗∗

(0.24) (0.35)
Sh. unequal earning specialties −1.21∗∗∗ −0.60∗∗∗

(1.26) (1.74)

LMA FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
N 750 750 750 750
F -Statistic 7.59 8.48

Notes: This table includes OLS and IV regressions for physicians including controls. Column (1) is the
OLS regression where the dependent variable is calculated using earned income (instead of wage income).
The remaining variables are unchanged. Column (2) is the corresponding IV regression. Column (3) is the
OLS where dependent variable is wage income, but four controls for specialties of physicians are included
(see text for details). Column (4) shows the corresponding IV regression. N is the number of observations
rounded to the nearest integer divisible by 50. *p<0.1, ** p<0.05, *** p<0.01.

Table C.3: Linear specification

Physicians Dentists Real estate

OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

α−1
−o 0.44∗∗∗ 1.85 1.16∗∗∗ 2.40∗∗∗ 1.37∗∗∗ 1.65∗∗∗

(0.13) (1.14) (0.36) (0.81) (0.21) (0.55)
ln(Average Income) −0.32∗∗∗ −0.45∗∗∗ 0.10 0.02 0.12 0.09

(0.08) (0.12) (0.14) (0.14) (0.09) (0.08)
ln(Population) −0.03 0.01 0.02 0.05 0.00 0.01

(0.03) (0.04) (0.05) (0.07) (0.03) (0.03)

Share upper tail not included in Bartik*Y Yes Yes Yes Yes Yes Yes
LMA FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes

N 750 750 150 150 200 200
F -Statistic 7.13 13.80 7.38

Notes: This table shows the OLS and IV coefficients for regressions of local top income inequality for some occupations on
top income inequality in the local population excluding that occupation. Regressions are run using a linear specification
instead of log-on-log, but all other details remain the same. Regressions include a control for the share of employment of the
local employment not captured by the occupations in the instrument, interacted with a year dummy. Columns (1), (3) and
(5) show the OLS regressions and columns (2), (4) and (6) show the IV regressions. *p<0.1, **: p<0.05, ***: p<0.01.
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Table C.4: Occupations with the Largest Rotemberg Weights for Physician Regressions

Occupation Weights Occupation Weights

Financial service sales occupations 0.34 Managers, Excl. Real Estate 0.06
Financial managers 0.22 Real estate sales occupations 0.05
Lawyers and judges 0.19 Computer systems analysts and
Production supervisors or foremen 0.16 computer scientists -0.06
Airplane pilots and navigators 0.16 Tool and die makers and die setters -0.06
Other financial specialists 0.13 Driver/sales workers and truck Drivers -0.08
Sales occupations and sales representatives 0.10 Engineers -0.10
Accountants and auditors 0.06 Subject instructors, college -0.13

Notes: Occupations with the largest Rotemberg weights in absolute value in the instrument for Physician regres-
sions.

Table C.5: Physician Regressions: Excluding Occupations with the Highest Rotemberg Weights

Excluding: Financial services Financial Lawyers and Production super- Airplane pilots
sales occupations managers judges visors and foremen and navigators

(1) (2) (3) (4) (5)

ln(α−1
−o) 1.54∗∗ 1.61∗∗ 1.54∗∗ 1.63∗∗ 1.56∗∗

(0.73) (0.72) (0.70) (0.74) (0.74)
ln(Average Income) −0.61∗∗∗ −0.62∗∗∗ −0.61∗∗∗ −0.63∗∗∗ −0.62∗∗∗

(0.15) (0.15) (0.14) (0.15) (0.14)
ln(Population) 0.07 0.08 0.07 0.08 0.07

(0.07) (0.07) (0.07) (0.07) (0.06)

LMA FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
N 750 750 750 750 750
F -Statistic 6.90 7.92 6.91 6.73 8.10

Notes: This table shows IV regressions for physicians when we in turn exclude the 5 occupations with the highest
Rotemberg weights from the instrument. These occupations are Financial services sales occupations (0.34), Financial
managers (0.22), Lawyers and judges (0.19), Production supervisors or foremen (.16), and Airplane pilots and navigators

(0.16). The dependent variable is logarithm of inverse Pareto parameter, log(α−1
o ), for physicians in all regressions. All

other details are as in Table 3. *p<0.1, ** p<0.05, *** p<0.01.
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occupations in the instrument to 30 or 15. Panel A shows results for physicians, Panel B for

dentists and Panel C for real estate agents.

C.3 Shift-share robustness checks

We follow the framework of Goldsmith-Pinkham (2020) and assume that the occupational

shares are not correlated with changes in the outcome variable other than through their effect

on local top income inequality. We, however, deviate from the standard setting in two ways.

First, our preferred specification uses log of income inequality instead of levels. As shown in

Appendix Table C.3, the linear specification somewhat reduces the significance of our results

for physicians, but with little effect in the point estimate. The results for dentists and real

estate agents are, if anything, even stronger.

Second, to improve the power of the instrument and to take into account that the set of

dominant occupations varies across LMA, we let the set of (20) occupations in the instruments

differ across LMAs. If we use the same set of occupations, the first-stage regression is consid-

erably weaker. In Appendix Table C.7, we show that this is driven by smaller LMAs. We do

so by considering the same set of 20 occupations for all LMAs (and include a control for the

share of the population not included in the instrument, as suggested by Goldsmith-Pinkham

(2020)), but with a focus on only bigger LMAs. We do so by restricting attention to those

with at least 120 physicians. We get a number of LMA×year observations similar to those of

dentists and real estate agents and we obtain a much stronger first-stage F -statistic of 15.36.

Presumably, our mechanism is more relevant in larger areas with a broader range of medical

services. This specification also permits us to implement the Adão (2019) standard errors.

Results for physicians and dentists remain significant.

C.4 Occupational characteristics

Table C.8 shows the regressions results associated with the scatter plots of Figure 5. All

coefficients show the expected sign (the p-value for the importance of customer service is 0.11.)

68



Table C.6: Alternative Cutoffs

Top 5 pct. Only ≥40 obs. Only ≥15 obs Using 30 occ. Using 15 occ.
(1) (2) (3) (4) (5)

Panel A: Physicians

ln(α−1
−o) 1.34∗∗∗ 1.78∗∗ 1.38∗∗ 1.77∗∗ 1.53∗∗

(0.43) (0.86) (0.68) (0.86) (0.62)
ln(Average Income) −0.80∗∗∗ −0.63∗∗∗ −0.58∗∗∗ −0.65∗∗∗ −0.61∗∗∗

(0.20) (0.16) (0.13) (0.17) (0.15)
ln(Population) 0.10 0.08 0.06 0.09 0.07

(0.06) (0.09) (0.06) (0.08) (0.07)

LMA FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
N 750 550 1100 750 750
F -Statistic 9.36 5.60 7.11 6.98 7.22

Panel B: Dentists

ln(α−1
−o) 0.67 3.18 1.67∗∗ 1.84∗ 2.34∗

(0.51) (2.98) (0.82) (1.00) (1.25)
ln(Average Income) −0.10 −0.04 −0.09 0.00 −0.04

(0.30) (0.43) (0.21) (0.22) (0.25)
ln(Population) 0.02 0.41 0.05 0.05 0.07

(0.11) (0.46) (0.11) (0.14) (0.18)

LMA FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
N 150 100 300 150 150
F -Statistic 10.32 2.48 7.19 4.54 4.72

Panel C: Real Estate Agents

ln(α−1
−o) 0.66 1.34∗∗ 1.19∗∗ 1.34∗ 1.50∗∗∗

(0.41) (0.57) (0.59) (0.80) (0.57)
ln(Average Income) 0.17 0.04 0.15 0.10 0.08

(0.23) (0.17) (0.16) (0.18) (0.18)
ln(Population) 0.01 −0.02 0.00 0.01 0.01

(0.07) (0.06) (0.05) (0.06) (0.06)

LMA FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
N 200 150 200 200 200
F -Statistic 10.22 7.15 6.80 6.80 7.05

Notes: This table shows the IV regressions for physicians (Panel A), dentists (Panel B), and real estate
agents (Panel C) for 5 different specifications. Column (1) shows a regression where we use the top 5%
(instead of 10%) of the income distribution (for the dependent variable, the independent variable and the
construction of the IV). This regression keeps the same number of LMAs so that number of observations
underlying inequality measures is lower. Columns (2) and (3) use a cutoff of 40 and 15, respectively, for
the selection of LMAs (instead of 20). Columns (4) and (5) use 30 and 15 occupations in the construction
of the instrument (instead of 20). *p:<0.1, ** p<0.05, *** p<0.01.
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Table C.7: Regressions with Adão et al. (2019) Standard Errors

Physicians Dentists Real estate

OLS IV OLS IV OLS IV
(1) (2) (3) (4) (5) (6)

α−1
−o 1.67∗∗ 1.89∗ 1.60∗ 2.09∗ 1.11∗ 1.33

(0.68) (0.57) (0.88) (0.75) (0.64) (0.65)
[1.09] [1.11] [1.2]

ln(Average Income) −0.63∗∗∗ −0.51∗∗∗ 0.02 0.05 0.15 0.07
(0.15) (0.12) (0.21) (0.12) (0.18) (0.08)

ln(Population) 0.06 0.02 0.04 0.07 0.00 0.00
(0.09) (0.04) (0.12) (0.07) (0.06) (0.03)

lag Excluded share*Y No Yes No Yes No Yes
LMA FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
N 200 200 150 150 200 200
F -Statistic 5.56 15.36 7.11 14.62 9.75 8.45

Notes: OLS and IV regressions for selected occupations. The specification is linear and includes controls for average
income, population and the share of general population that is not included in the instrument interacted with a year
dummy. Standard errors in squared brackets are Adão et. al. (2019) standard errors. Columns (1), (3) and (5) are
OLS regressions and columns (2), (4) and (6) are IV regressions. Columns (1) and (2) are for physicians, columns (3)
and (4) are for dentists and (5) and (6) are for real estate occupations. F-stats for IV regressions refer to the first stage
regressions. *p<0.1, **p<0.05, *** p<0.01 using Adão et. al. (2019) standard errors.

Table C.8: Spillover t-stats and Occupational Characteristics

(1) (2) (3) (4) (5)
Offshore (Blinder) −1.36∗

(0.54)

Customer service - level 2.11∗

(0.78)

Customer service - importance 1.53
(0.79)

Working with public - level 1.76∗

(0.76)

Working with public - importance 2.11∗∗

(0.73)
N 28 28 28 28 28

Notes: This table shows the relationship between the t-stat of the spillover coefficients from the
IV regressions (from Table 6) and five characteristics of occupations. These are a measure of
offshorability from Blinder (2009) as well as four measures from O*NET: Level and importance of
“Customer service and personal service” from Knowledge Requirements and level and importance
of “Performing for or working directly with the public” from Work Activities. O*NET measures
are rescaled as percentiles. We use 28 occupations which are those amongst the biggest 30
occupations in the top 10 percent with at least 20 LMAs for the IV regressions. * p<0.1,
**p<0.05, ***p<0.01.

Additional Reference

Acemoglu, Daron and David Autor, “Skills, tasks and technologies: Implications for employ-

ment and earnings,” in David Card and Orley Ashenfelter, eds., Handbook of Labor Economics,

Vol. 4 Part B, Elsevier, 2011, pp. 1043–1171.
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